Joshi, Kaushik A., 2010, “Studies on Chemical Entities of Medicinal Interest”, thesis PhD, Saurashtra University

http://etheses.saurashtrauniversity.edu/id/eprint/500

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
STUDIES ON CHEMICAL ENTITIES OF MEDICINAL INTEREST

A THESIS
SUBMITTED TO THE
SAURASHTRA UNIVERSITY
FOR THE DEGREE OF

Doctor of Philosophy

IN
THE FACULTY OF SCIENCE (CHEMISTRY)

BY
Kaushik A. Joshi

UNDER THE GUIDANCE
OF
Dr. H. S. Joshi

DEPARTMENT OF CHEMISTRY
(DST-FUNDED, UGC-SAP SPONSORED),
SAURASHTRA UNIVERSITY
(Re-Accredited Grade B by NAAC, CGPA 2.93),
RAJKOT - 360 005.
INDIA

APRIL-2010
Statement under o. Ph. D. 7 of Saurashtra University

The work included in the thesis is my own work under the supervision of Dr. H. S. Joshi and leads to some contribution in chemistry subsidized by a number of references.

Date: - -2010
Place: Rajkot

(Kaushik A. Joshi)

This is to certify that the present work submitted for the Ph.D. Degree of Saurashtra University by Kaushik A. Joshi his own work and leads to advancement in the knowledge of chemistry. The thesis has been prepared under my supervision.

Date: - -2010
Place: Rajkot

Dr. H. S. Joshi
Associate Professor
Department of Chemistry
Saurashtra University
Rajkot-360005
Dedicated
To my beloved parents
ACKNOWLEDGEMENTS

I am extremely thankful to the almighty god for making me capable of doing all that I purpose, the work leading to my Ph.D. thesis submission one of them.

At the outset, I would like to extol Dr. H. S. Joshi for his advice during my doctoral research endeavour during the yester years. As my supervisor, he constantly forced me to remain focused on achieving my goal. His observation and comments helped me to establish the overall direction of the research and to move forward expeditiously with investigation in depth. It could hardly have become possible for me to venture in the domain of research without his continuous guidance, encouragement, motivate attitude, punctuality, and parental care.

I also owe to Professor and Head Dr. P. H. Parsanla, Prof. Anamik Shah, Dr. Y. T. Naliapara Department of Chemistry, as I have been constantly benefited with their lofty research methodology and the motivation as well as their highly punctual affectionate.

I owe my special thanks to University Grants Commission for finding me as Meritorious Research Fellow which is really an achievement and helpful task for me.

I owe my special thanks to Dr. Dushyant Purohit and Dr. Vljay Ram for establishing me in the field of research. I would never forget the company I had from my colleagues and friends Bhavesh Dodiya, Govind Kher, Renish Ghetiya, Kapil Dubal and Piyush Vekariya.

I am extremely thankful to my research colleagues and friends Mehul, Shailes, Amit, Rahul, Nayan, Shrey, Ravi, Dhiru, Rakesh, Savant, Sandip, Jignesh, Suresh, Pooja.

I offered my gratitude to my special Friends Haresh Vala, Haresh Ram, Abhay Bavishi, Vipul Audichya.

Who in this world can entirely and adequately thank the parents who have given us everything that we possess in this life? The life itself is their gift to us, so I am at loss of words in which to own my
most esteemed father Shri Arvindbhai and My loving mother Smt. Bhartiben and most venerated grand father Late. Nanubhai, grand mother Damyantiben. I am gratefully appreciate the affection and co-operation extended to me by my sisters Dhara, Mira, Vaishali and my brother Mehulbhai. Through the stress and strain of this study, my friend and fiancée Rajvi has encouraged me to reach my destination.

I am very much thankful to Dr. Chetna Upadhyay and Dr. Jatin Upadhyay, M. V. M. science college, for evaluating the in vitro antimicrobial activity. Big thanks to the all teaching & non teaching staff at the Department of Chemistry for their kind support.

I express my grateful acknowledgment to Department of Chemistry, Saurashtra University for providing me the excellent analytical facilities, and kind furtherance for accomplishing this work.

(KAUSHIK A. JOSHI)
CONTENTS

SYNOPSIS ..
Section - I: Synthesis and biological evaluation of \(N-((E)-4-(Arylidene)-5\text{-oxo-2-phenylimidazol-1-yl})-4\text{-isopropylbenzamides}\)
Introduction and Spectral studies 97
Experimental ... 102
Table of Antimicrobial screening 105
Reference .. 106

[B] STUDIES ON THIOPHENE-2-CARBALDEHYDE DERIVATIVES
Introduction .. 108
Reference .. 113

PART - I: STUDIES ON INDAZOLES
Introduction .. 117

Section - II: Synthesis and biological evaluation of Ethyl 6-oxo-4-aryl-2-(thiophen-2-yl)cyclohex-1-enecarboxylate
Introduction and Spectral studies 122
Experimental .. 127
Table of Antimicrobial screening 129

Section - III: Synthesis and biological evaluation of 4,Dihydro 4-aryl-6-(thiophen-2-yl)-2\text{-H}-indazole-3(3a\text{-H})-ones
Introduction and Spectral studies 135
Experimental .. 140
Table of Antimicrobial screening 142
Reference .. 143

PART - II: STUDIES ON AMINOBENZYLATED MANNICH BASES
Introduction .. 148

Section - I: Synthesis and biological evaluation of \(N,N-((Dialkyl/aryl amino)(thiophen-2-yl) methyl)acetamides\)
Introduction and Spectral studies 152
Experimental .. 157
Table of Antimicrobial screening 160
Reference .. 161
The research work incorporated in the thesis with the title “STUDIES ON CHEMICAL ENTITIES OF MEDICINAL INTEREST” has been described as under the following parts.

PART[A] : STUDIES ON ISOPROPYL BENZOIC ACID DERIVATIVES

PART[B] : STUDIES ON THIOPHENE-2-CARBALDEHYDE DERIVATIVES

PART[C] : STUDIES ON IMIDAZO [1,2-α]PYRIDINE DERIVATIVES

PART [A] : STUDIES ON ISOPROPYL BENZOIC ACID DERIVATIVES

Isopropyl benzoic acid and their derivatives constitute an important class of organic compounds with diverse agricultural, industrial and biological activities. The synthesis of this moiety has received considerable attention in recent years. Isopropyl benzoic acid is also known as Cumic acid.

The chemistry of 1,2,4-triazole has assumed importance because of their versatility in the synthesis of many heterocyclic compounds. The synthesis of these heterocycles has received considerable attention in recent years.

With a view to supplement of these valid observations and to evaluate its pharmacological profiles, it was thought worthwhile to synthesized some new heterocycles bearing 1,2,4-triazole nucleus, which have been described as under.

PART-I: STUDIES ON 1, 3, 4-THIADIAZOLE DERIVATIVES

The synthesis of compounds incorporating 1,3,4-thiadiazole rings has been attracted widespread attention due to their diverse pharmacological properties like antibiotic, antifungal, herbicidal, antitubercular, etc. To approach this goal synthesis of some 1,3,4-thiadiazole have been undertaken, which have been described as under.
SECTION-I: Synthesis and biological screening of 6-Aryl-3-(4-isopropylphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles

Type (I) R= Aryl

1,3,4-Thiadiazole derivatives of Type (I) have been synthesized by the condensation of 1-amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazole-5-thiol with different aromatic acids in the presence of POCl₃.

SECTION-II: Synthesis and biological screening of 5,6 Dihydro-6-aryl-3-(4-isopropylphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles

Type (II) R= Aryl

1,3,4-Thiadiazole derivatives of Type(II) have been synthesized by the condensation of 1-amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazole-5-thiol with different aromatic aldehydes in the presence of p-toluenesulphonic acid.

PART-II: STUDIES ON THIADIAZINES

Literature survey reveals that various 1,3,4-thiadiazines have resulted in many potential drugs and known to exhibit a broad spectrum of biological activities such as
antibacterial, cardiovascular, antifungal, antitubercular, etc. Hence it was considered worthwhile to synthesized 1,3,4-thiadiazine derivatives for better drug potential, which have been described as under.

SECTION-I : Synthesis and biological screening of 6-Aryl-3-(4-isopropylphenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines

Thiadiazines of Type (III) have been synthesized by the condensation of 1-amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazole-5-thiol with different substituted phenacyl bromides.

PART-III : STUDIES ON OXADIAZoles

1,3,4- Oxadiazoles are associated with broad spectrum of pharmacological activity like anesthetic, hypnotic, antibacterial, hypoglycemic and antifungal. These valid observations promoted us to synthesis 1,3,4- oxadiazole derivatives with better therapeutic value have been described as under.

SECTION-I : Synthesis and biological screening of 2-(4-Isopropylphenyl)-5-aryl-1,3,4-oxadiazoles
Oxadiazoles of type (IV) have been synthesized by the cyclo condensation of isopropylbenzohydrazide with different aromatic acids in the presence of POCl₃.

PART-IV: STUDIES ON IMIDAZOLONES

The discovery of imidazolones as potent biologically active agent has led to the exploration of large number of structural variants, containing imidazolones moiety as an invariable ingredient. Its derivative have shown various biologically activities such as anathematic, antimicrobial, antihistamine, anti-inflammatory, antibacterial etc. in order to develop therapeutically important compounds, it was consider of interest to synthesize some imidazolones shown as under.

SECTION-I : Synthesis and biological screening of N-((E)-4-(Arylidene)-5-oxo-2-phenylimidazolidin-1-yl)-4-isopropylbenzamides

The synthesis of imidazolones of type—(V) have been under taken by the reaction of 4- isopropylbenzohydrazide with substituted azalactones which in turn have been prepared by well known Erlenmeyer azalactone synthesis.
PART [B] : STUDIES ON THIOPHENE-2-CARBALDEHYDE DERIVATIVES

Heterocyclic compounds bearing thiophene-2-carbaldehyde ring system and their derivatives are demonstrates various biological and pharmacological activities. Our works are paying attention on introduction of chemical multiplicity in the molecular frame work, in order to synthesizing active molecules of widely different composition. Literature assessment reveals that sulfur containing heterocyclic compounds have acknowledged considerable attention in remedial science due to their biological and pharmacological activities such as anti-HIV, antitubercular, antimicrobial, anticonvulsant, anticancer, antiviral etc. Considering the increasing importance of thiophene-2-carbaldehyde nucleus, we have undertaken the synthesis of some new arylaminomethyl and oxadiazole derivatives bearing thiophene-2-carbaldehyde nucleus, which have been described as under.

PART - I : STUDIES ON INDAZOLES

Cyclohexenone and indazole derivatives have been found to be associated with various pharmacological activities such as antifungal, antibacterial, anticoagulant, antipyretic, anti-inflammatory etc., led by these considerations some new indazole have been synthesized which have been described as under.

SECTION - I : Synthesis and biological screening of Ethyl 6-oxo-4-aryl-2-(thiophen-2-yl)cyclohex-1-ene carboxylates

\[R \]

\[\begin{array}{c}
\text{Type (VII) } R = \text{Aryl}
\end{array} \]
Cyclohexenone derivatives of Type-(VII) have been synthesized by the cyclocondensation of the chalcones of ethyl acetoacetate in presence of sodium ethoxide.

SECTION -II : Synthesis and biological screening of 4,Dihydro-4-aryl-6-(thiophen-2-yl)-2H-indazole-3(3aH)-ones

\[
\text{Type (VII) } R=\text{Aryl}
\]

Indazole derivatives of Type-(VIII) have been prepared by the condensation of cyclohexenone derivatives of Type-(VII) with hydrazine hydrate.

PART- II : STUDIES ON AMINOBENZYLATED MANNICH BASES

Mannich bases containing bridged head N-atom exhibit pronounced biological activities. It play an important role as intermediate in synthesis of various organic compounds. Mannich base also exhibit complexation characteristics with many transition metal atoms. Hence, it is pertinent to synthesize some novel mannich base with a hope that these compound may have biological activies.

SECTION-I : Synthesis and biological screening of \(N,N-(\text{Dialkyl/aryl amino})(\text{thiophen-2-yl})\text{methyl})\text{acetamides}\)
Type (VIII) $R_1, R_2 = \text{Aryl}$

The preparation of mannich bases of type (IX) has been undertaken by the condensation of acetamide with secondary amine and thiophene-2-carbaldehyde.

PART [C] : STUDIES ON IMIDAZO[1,2-α] PYRIDINES

Heterocyclic compounds bearing imidazo[1,2-α]pyridine ring system are endowed with variety of biological activities. Our strategy is based on to develop new bioactive entities especially with pharmacological activities bearing heterocyclic ring system. Literature survey reveals that nitrogen containing heterocyclic compounds like imidazo[1,2-α]pyridines have received considerable attention in medicinal science due to their biological and pharmacological activities like anti-inflammatory, herbicidal, hypnotic, sedative, antimicrobial, antitubercular, CNS depressant, antithyroid and many other therapeutic activities.

These valid observations prompted us to design and synthesize some heterocycles like chalcones, pyrazolines, cyanopyridines, mannich bases, pyrimidines, isoxazoles, imidazolinones etc., bearing imidazo[1,2-α]pyridine nucleus, which have been described as under.

PART-I : STUDIES ON PYRAZOLINES

Among a wide variety of heterocycles that have been explored for developing biologically active molecules like pyrazolines have played important role in medicinal
chemistry. Pyrazolines have been found to possess bactericidal, fungicidal, antiviral and other pharmacological properties like anticonvulsant, antidepressant and anti-inflammatory. These valid observations led us to synthesize some new pyrazoline derivatives for better drug potential which have been described in following sections.

SECTION-I : Synthesis and biological screening of (2E)-3-(2-(4-fluorophenyl)-6-methylH-imidazo[1,2-α]pyridin-3-yl)-1-arylprop-2-en-1-ones

![Chemical structure](image)

Type (X) $R = \text{Aryl}$

The chalcones of Type(X) have been synthesized by the condensation of 2-(4-Fluorophenyl)imidazo[1,2-α]pyridin-3-carbaldehyde with different aryl ketones in the presence of 40% NaOH.

SECTION-II : Synthesis and biological screening of 1-(5-(2-(4-fluorophenyl)-6-methyl-H-imidazo[1,2-α]pyridin-3-yl)-4,5-dihydro-3-arylpyrazol-1-yl)ethanones.

![Chemical structure](image)

Type (XI) $R = \text{Aryl}$
Pyrazoline derivatives of Type (XI) have been synthesized by the cyclocondensation of the chalcones of Type (X) with hydrazine hydrate in glacial acetic acid.

PART-II : STUDIES ON ARYLAMINOMETHYL DERIVATIVES

Arylaminomethyl derivatives represents one of the modest class of biological active agents which have been deeply studies during search on new potential agents. These have been reported to be active as antimicrobial, antitubercular, anticancer, insecticidal etc. In view of these valid observations, it was contemplated to synthesis some new arylaminomethyl derivatives possessing higher biological activity which have been described as under.

SECTION-I : Synthesis and biological screening of (I7E)-N-((2-(4-fluorophenyl)-6-methylH-imidazo[1,2-a]pyridin-3-yl)methylene)-4-arylamines.

![Chemical Structure](image)

Type (XII) \(R = \text{Aryl} \)

The azomethines of Type (XII) have been prepared by the condensation of 2-(4-Fluorophenyl)imidazo[1,2-a]pyridin-3-carbaldehyde with different aromatic amines.

SECTION-II : Synthesis and biological screening of \(N-((2-(4-fluorophenyl)-6-methylH-imidazo[1,2-a]pyridin-3-yl)methyl)-4-arylamines \).
The compound of Type (XIII) have been synthesized by the reaction of arylamines of Type (XII) with an. NaBH₄.

The constitution of all the synthesized compounds have been characterized using elemental analysis, FT-IR and ¹H NMR spectroscopy and further supported by mass spectroscopy. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been evaluated for their antibacterial activity towards *Gram +ve* and *Gram -ve* bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration 2000/1000/500 µg/ml. The biological activities of the synthesized compounds have been compared with standard drugs.
Studies on Chemical Entities of Medicinal Interest
INTRODUCTION

Research programs for the discovery of new drugs and for improving the evolution criteria are under way in many laboratories. In addition knowledge of specific constituents of the mycobacterium cell and their biochemical roles have advanced considerably in the recent years and may permit a more rational approach to the design of new drug action on specific targets. Also, recent improvements in the knowledge of the mechanism of action of available drugs and the biochemical mechanism of resistance to them may be used as a basis for design new and better weapons to fight the mycobacterium diseases.

The last few decades have witnessed massive advances in biochemistry, physiology, pharmacology and genetics. This has to a better understanding of working the body at the molecular level. This in turn has resulted a much better understanding of the structure and function of important drug targets e.g. enzymes and receptors and that how drugs can be designed for these targets. Advances in organic chemistry have made possible the synthesis of complexes molecules. Enantiometry is an important process in medicinal chemistry since life is inherently chiral and the drug targets within the body are chiral. As such, they can distinguish between the enantiomers of a chiral drug, so the use of recemic drug is inherently wasteful, since only one enantiomer is ideally designed to interact with its target. Moreover, the existences of the “wrong” enantiomer could create problems if it interacted with a different receptor, resulting inside effects.

A prerequisite for the design of safe drugs is knowledge about the various metabolic reactions that xenobiotics and endogenous compounds undergo in the organism. Because pharmacological activity depends on molecular structure, the medicinal chemist is restricted in the choice of functional groups for the design of new drugs. Often he finds or she encounters a situation where a structure has adequate pharmacologic activity but has an inadequate
Studies on chemical... pharmacokinetic profile (i.e., absorption, distribution, metabolism and excretion). This is because pharmacology and pharmacokinetic departments in the pharmaceutical industry often do not collaborate at the early stage of drug development. It is only later, when the new compound is tested in animals or in humans, that pharmacokinetic disadvantages become obvious.

Modern drug discovery starts with the identification of a pharmacologic target that is hypothetically the primary cause of disease. Potential targets include host cell genes, receptors, signaling systems, organelles and biochemical such as enzymes. Additionally, an element of a disease modifying process, such as anti-inflammatory mediator, may be a target. Biological processes required for propagation of infectious agents have also proven to be therapeutically useful targets; examples include protease and reverse transcriptase of the human immuno deficiency virus (HIV). Common to all targets selected as therapeutic opportunities is the hypothesis that some type of pathogenetic linkage exists to the disease causing process, rather than to specific signs, symptoms, or effects.

Heterocyclic compounds have great applicability in pharmaceutics because they have specific chemical reactivity and provides false synthons in biosynthetic process or block the normal functioning of biological receptors. The inhibition of amide resonance resulting into more susceptibility of β-lactam to nucleophile is considered at least in part responsible for antibacterial property, apparently by acetylatin g transpeptidase and thus inhibiting bacterial cell wall biosynthesis.

Most of the alkaloids which are nitrogenous bases occurring in plants and many antibiotics including penicillin and streptomycin have also heterocyclic ring system. Many natural pigments such as indigo, hemoglobin and anthocyanin are heterocycles. Most of the sugars are their derivatives including Vitamin C for instance, exist largely in the form of five
membered. Vitamin B₆ (Pyridoxine) is a derivative of pyrimidine essential in amino acid metabolism.

Important drugs, poisons and medicines (both natural and synthetic) such as sulphathiazole, pyrethrin, rotenmone, alpidem, zolpidem, fluconazole, strychnine, reserpine, certain of the antihistamines, the ergot alkaloids caffeine, cocaine, barbiturates, etc. are heterocyclic compounds.

Research in the field of pharmaceutical has its most important task in the development of new and better drugs and their successful introduction into clinical practice. Central to these efforts, accordingly stand the search for pharmaceutical substances and preparation which are new and original. In addition to these objectives the searching for drug which exhibit a clear advantage over a drug already known. Such advantages may be qualitative or quantitative improvement in activity, the absence of undesirable side effect, a lower toxicity, improved stability or decreased cost. It is important at the outset to note that drug discovery is not an unambiguous term in the pharmaceutical Research and Development world. For example, it can be defined using either programmatic or organizational approaches (or both), with several options on each category. Hence, it is important first to understand this variability and to adopt a specific definition for the purpose of this discussion.

During the period of 1930-1950 there was an urgent need for new drug to treat disease which had a high mortality rate, there was only limited appreciation of the hazard such drugs might present, and toxicological studies before clinical trials were fairly rudimentary. Proving the proverb *Necessity is the mother of invention*, during the decade of 30 and 40s a large number of drugs introduced. Therefore this period is regarded as *Golden Period* of new drug discovery.
The contribution of organic chemistry to be development of scientific medicine in the 19th century mainly from acyclic and carbocyclic compounds, although the pyrazoline antipyrin (1) was introduced as an antipyretic and analgesic in 1984 and the first barbiturate baritone (veranol) (2) in 1903. Guttmann treated malaria with methylene blue in 1891, with slight success, and in 1912 he introduced acriflavine as trypancide, it has proved to be more valuable as an antiseptic. Phenazopyridini (pyridium) (3) was introduced for the same purpose in 1926, and although it is relatively ineffective it has continued to be used since it has some analgesic action.

\[
\begin{align*}
\text{(1)} & \quad \begin{array}{c}
\text{O} \\
\text{N} \\
\text{Ph} \\
\text{N} \\
\text{CH}_3 \\
\end{array} \\
\text{(2)} & \quad \begin{array}{c}
\text{O} \\
\text{N} \\
\text{H} \\
\text{H} \\
\text{C} \\
\text{C} \\
\text{H}_3 \\
\end{array} \\
\text{(3)} & \quad \begin{array}{c}
\text{N} \\
\text{N} \\
\text{Ph} \\
\end{array}
\end{align*}
\]

AIM AND OBJECTIVES

Taking in view of the applicability of heterocyclic compounds, we have undertaken the preparation of heterocycles bearing isopropylbenzoic acid, thiophene-2-carbaldehyde and imidazo[1,2-α]pyridine nucleus. The placements of a wide variety of substituents on these nuclei have been designed in order to evaluate the synthesized products for their pharmacological profile against selected strains of bacteria and fungi. During the course of our work, looking to the application of heterocyclic compounds, several entities have been designed, generated and characterized using spectral studies. The details are as under.

[1] To generate several derivatives of Isopropyl benzoic acid and their fused derivatives such as Thiadiazoles, Thiadizines, Oxadiazoles, Imidazolones.

To generate Acetyl pyrazoline and Arylaminoethyl derivatives like Schiff’s base and its reduction.

To check purity of all synthesized compounds using thin layer chromatography.

To characterize these synthesized products for structure elucidation using various spectroscopic techniques like IR, 1H NMR, mass spectral studies and C, H, N analysis.

To evaluate these new synthesized products for better drug potential against different strains of bacteria (*Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli*, *Salmonella Paratyphi*) and fungi (*Aspergillus niger*, *Candida albicans*).
Part- A

Studies on Isopropyl Benzoic Acid Derivatives
INTRODUCTION

Isopropyl benzoic acid (1) and their derivatives constitute an important class of organic compounds with diverse agricultural, industrial and biological activities. The synthesis of this moiety has received considerable attention in recent years. Isopropyl benzoic acid is also known as cumic acid or cuminic acid and cumin (2) has also known as Jeera.

Triazoles are well known five membered heterocyclic compounds and several procedures for their synthesis have been extensively studied. Such studies have been stimulated by various promising applications, especially in the case of nitrogen containing heterocyclic entities. Triazoles have occupied an important place in the drug industry. In fact, certain nitrogen containing heterocycles are used as pharmaceuticals e.g. analgesic, anti-inflammatory, antipyretic, agrochemicals where as some other is being studied for their medicinal interest. The knowledge of such applications has pointed out that nitrogen containing heterocycles are important target to be prepared to our research on medicinally interesting chemical entities.

During our prior art studies we observed research carried on the triazoles of isopropyl benzoic acid. We found that triazoles of isopropyl benzoic acid have not been synthesized yet. Thus taking into the consideration that probably the synthesized compounds may prove to be very potent analgesic, anticoagulant, anti-inflammatory, antipyretic agents. For the same purpose we carried out some microbial studies which
Studies on chemical…

are showing some positive results.

Triazoles are of two types 1,2,3-triazole (3) and 1,2,4-triazole (4).

\[
\begin{array}{c}
\text{1,2,3-Triazole (3)} \\
\begin{array}{c}
\text{1,2,4-Triazole (4)} \\
\end{array}
\end{array}
\]

Hao Z1 and Staben Steven2 have been studied briefly with the chemistry of 1,2,4- triazoles. Bladin3,4 is a pioneer scientist in the field of triazole, who had synthesized the first derivative of 1,2,4-triazole in 1885. 1,2,4-triazole derivatives not only known for their medicinal applications, but they are also used as analytical reagents5, dyes and photographic chemicals6 corrosion inhibitors7,8 and in the preparation of polymers9.

SYNTHETIC ASPECT

Several methods have been reported in the literature for the synthesis of 1,2,4-triazoles. The starting material for the synthesis of triazoles is thiosemicarbazide or dithiocarbamate derivatives having nitrogen containing functions. The procedures for synthesizing 1,2,4-triazoles have been described as under.

1. Reid and heindel10 reported that the reaction of aryl acid hydrazide with CS\textsubscript{2}/KOH and hydrazine hydrate yields triazoles (5).

\[
\begin{array}{c}
\text{R-NH-NH}_2 \\
\xrightarrow{\text{CS}_2/\text{KOH}} \\
\text{R-NH-NH-NH}_2 + \text{S}^{K^+} \xrightarrow{\text{NH}_2\text{NH}_2\text{H}_2\text{O}} \\
\text{H}_3\text{C-N-N-N-CH}_3 \\
\hline
\end{array}
\]

\textit{Isopropyl benzoic acid}
2. K. S. Bhat et al.11 have synthesized 4-amino-3-(2,4-dichloro-5-fluorophenyl) 1,2,4-triazol-5-thiol (6) with the help of thiocarbohydrazide and 2,4 dichloro-5 fluoro benzoic acid.

![Chemical structure of 6]

3. N. U. Guzeldemirci et al.12 have prepared 1,2,4 triazole (7) in the presence of NaOH from aryl acid hydrazide.

![Chemical structure of 7]

4. C. S. Andotra and Sukhbinder Kaur13 synthesized triazole pyrimidine (8) by the reaction of aromatic acid with substituted hydrazino pyrimidines.

![Chemical structure of 8]

5. S. F. Barbuceanu et al.14 have reported 5-[4-(4-chlorophenylsulfonyl)phenyl]-4H-1,2,4-triazole-3-thioles (9) and It is prepared from 4-(4-chlorophenylsulfonyl)-benzoic acid hydrazides.
6. Sumesh eswaran et al.15 also synthesized 1,2,4 triazole (10) from 4-hydroxy-8-(trifluoromethyl)quinoline-3- carbohydrazide.

7. Zhizhang Li16 prepared the sulphhydryl derivative (11) of 1,2,4-triazole by the reaction of 4-amino-5-phenyl-2H-1,2,4-triazole-3(4H)-thione.

8. L. Labanauskas et al.17 have prepared triazoles (12) by the addition reaction of thiosemicarbazide with substituted benzoyl chloride in the presence of pyridine. Then the substituted thiosemicarbazide cyclised in water in the presence of alkaline catalyst.
9. Vikrant S. Palekar et al. have prepared 1,4-phenylenebis(4-amino-4H-1,2,4-triazole-3-thiol) (13) from bis-dithiocarbazinate in the presence of potassium hydroxide, carbon disulphide and hydrazine hydrate.

BIOLOGICAL EVALUATION

Triazoles are potential bioactive agents due to their wide spectrum of therapeutic importance. Drug molecules having 1,2,4-triazole nucleus with good activity are listed as under.

1. Estazoalm
2. Letrozole

Receptor Agonist

Antineoplastic
3. Fluotrimazole

![Fluotrimazole](image1)

Fungicide

4. Rifavirin

![Rifavirin](image2)

Antiviral, Antiinfection

5. Triazolam

![Triazolam](image3)

Plant growth regulator

6. Triadimenol

![Triadimenol](image4)

Fungicide

7. Azaconazole

![Azaconazole](image5)

Antifungal

8. Rilmazafone

![Rilmazafone](image6)

Sedative, hypnotic

9. Azocyclotin

![Azocyclotin](image7)

Pesticide

10. Amitrole

![Amitrole](image8)

Antithyroid activity

Isopropyl benzoic acid
Literature survey reveals that various 1,2,4-triazole derivatives display significant biological activities. 3-Amino-1,2,4-triazole was the first 1,2,4-triazole to be manufactured on large scale from amino guanidine format, useful as herbicides. Therapeutic activity of 1,2,4-triazoles are as under.

1. Bactericidal
2. Diuretic
3. Fungicidal
4. Herbicidal
5. Insecticidal and acaricidal
6. Plant growth regulator
7. Anticancer and Anti-HIV
8. Antileshmanial
9. Antitumor
10. Antidepressant and anxiolytic
11. Antimicrobial
12. Antiviral
13. Antiinflammatory
14. Antihypertensive
15. Anticonvulsant
B. Kahveci et al.36 have prepared 4-arylmethylideneamino-3-(R- benzyl)-4,5-dihydro-1H-1,2,4-triazol-5-ones via microwave assisted which exhibited remarkable anti fungal activity. Ram Janam Singh et al.37 have synthesized 4-aryl-5-(isomeric pyridoyl)-3H-1,2,4-triazoles as potent bacteriocidal agents which active against \textit{S. aureus, E. coli, B. subtilis} and \textit{P. aeruginosa}. Najim A. Al-Masoudi et al.38 have suggested 5-amino-4-phenyl-4H-1,2,4-triazole-3-thiol and their metal complexes which posses \textit{vitro} anti-HIV activity. E. De Clercq et al.39 screened ribavarin (14) for their antiviral and antimetabolic activities.

\begin{center}
\textbf{(14)}
\end{center}

\begin{center}
\textbf{(15)}
\end{center}

Hoong-Kun Fun et al.40 have investigated 4-Amino-3-(1-naphthoxyxymethyl)-1H-1,2,4-triazole-5(4H)-thione. B. Kahveci et al.41 have suggested 3-arylmethylideneamino-4,5-dihydro-1H-1,2,4-triazol-5-ones derivatives useful as an antifungal agents. Mckendry and co-workers42 have synthesized triazole derivatives (15) and reported them as broad spectrum broadleaf herbicides. H. A. Abdel-Aziz et al.43 have synthesized some piperidine-based 1,3-thiazole, 1,3,4-thiadiazole, and 1,3-thiazolo[2,3-c]-1,2,4-triazole derivatives which posses anti-arrhythmic activity. B. F. Abdel-Wahab et al.44 have reported 1,2,4-triazoles useful for antimicrobial agent.

R. P. Dickinson and co-workers45 have prepared Voriconazole (16) and found highly active against \textit{Aspergillus fumigatus} and \textit{a-}(hetero-arylmethyl)-1H-1,2,4-triazole-1-ethanol derivatives (17) are active against \textit{Candida albicans} and \textit{Cryptococcus neofermans}.
Studies on chemical...

Daniele Binchi et al.\(^{46}\) have screened pure stereoisomer of two new triazole derivatives (18,19) for their antifungal activity against variety of fungi showing an activity ratio R-form / S-form up to 400.

M. A. Kaldrikyan et al.\(^ {47}\) have discovered some benzofuryl-substituted 1,2,4-triazoles and reported their antitumor activity. Dae-Kee Kim et al.\(^ {48}\) have been synthesized 1,2,4-triazole derivatives (20) and screened for their significant ALKS inhibitory activity. K. J. Fisher et al.\(^ {49}\) have synthesized 1,2,4-triazole derivatives (21) to study their pesticidal and herbicidal activity. Xiang-Shu Cui et al.\(^ {50}\) have formulated 3-substituted-4-(4-hexyloxyphenyl)-4\(H\)-1,2,4-triazoles as anticonvulsant agent. Maarouf et al.\(^ {51}\) have documented analgesic and anti-inflammatory activity of 1,2,4-triazole derivatives.
Studies on chemical…

Thus the important role displayed by triazole moiety for various therapeutic and medicinal activities prompted us to synthesize some new thiadiazoles, thiadiazines, thiadiazepines, aryl triazoles, sulphonamides, aryl amides and mannich bases bearing triazole moiety, in order to achieve compounds having better drug potential. This study is described in the following parts.

PART-I : SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF THIADIAZOLES.

PART-II : SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF THIADIAZINES.

PART-III : SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF OXADIAZOLES.

PART-IV : SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF IMIDAZOLONES.
REACTION SCHEME

\[
\begin{align*}
\text{Con.} \text{H}_2\text{SO}_4 \quad \text{MeOH} & \quad \rightarrow \\
\text{Hydrazine Hydrate} \quad \text{MeOH} & \quad \rightarrow \\
\text{CS}_2/\text{KOH} \quad \text{MeOH} & \quad \rightarrow \\
\text{Hydrazine Hydrate} & \quad \\
\end{align*}
\]
REFERENCES

3. J. A. Bladin, Ber., 18, 1544 (1885).
4. J. A. Bladin, Ber., 19, 2598 (1886).
Studies on chemical…

Part- A

(Part-I)

Studies on 1,3,4-Thiadiazole Derivatives
INTRODUCTION

Thiadiazole derivatives have played an important role in pharmaceutical industries and exhibited various biological activities due to the presence of $-\text{N}=\text{C}–\text{S}$ group\(^1\). In thiadiazole ring system one sulphur and two nitrogen atoms are present in a five membered ring. According to their position, thiadiazole systems are classified as 1,2,3-thiadiazoles (1), 1,2,4-thiadiazoles (2), 1,3,4-thiadiazoles (3), and 1,2,5-thiadiazoles (4).

![Chemical Structures](image)

Among these four types of thiadiazole, 1, 3, 4-thiadiazole is well known. 1,3,4-Thiadiazole is used to formulate finished greases, lubricating oils, gear, automatic transmission. It is used as an ash less copper corrosion inhibitor and extreme pressure (EP) agent.

SYNTHETIC ASPECT

Literature survey reveals that several publications and patents\(^2\) described the synthesis of 1,3,4-thiadiazole as under

1. Prakash Karegoudar et al.\(^3\) have prepared thiadiazole derivatives (5) by the cyclization of aromatic acid with triazole in presence of POCl\(_3\)

![Synthesis Reaction](image)

2. Li-xue Zhang et al.\(^4\) have synthesized 1,3,4-thiadiazoles (6) by the cyclization of aromatic acid with triazole in presence of POCl\(_3\).
3. Jag Mohan et al.5 have prepared thiadiazole derivatives (7) by the cyclization of amino mercapto triazole and aryl aldehydes in presence of p-Ts-OH.

4. Zhong-Yi et al.6 have been prepared thiadiazole derivatives (8) from amino mercapto triazole and aryl aldehydes in presence of L-(+)-tartaric acid.

5. Q. Bano and co-workers7 have been prepared 6-phenyl amino-1,3,4-thiadiazole (9) by reacting triazole with amino acid.

6. Alaa Hassan et al.8 have prepared 1,3,4-thiadiazoles (10) by the cyclization of tetracyanoethene and 4-phenyl thiosemicarbazides.
7. Khosrow Zamani et al.9 have prepared thia diazoles (11) from the thiosemicarbazide by the cyclization in sulphuric acid.

\textbf{BIOLOGICAL EVALUATION}

Literature survey revealed that various thia diazoles have resulted in many potential drugs and are known to exhibit a broad spectrum of pharmacological properties. The specific pharmacological activities associated are as under.

1. Antitumor10
2. Antiviral11
3. Antibacterial12
4. Amoebicidal13
5. Antiinflammatory14
6. Antitubercular15
7. Antipyretic16
8. Anticancer17
9. CNS depressant18
10. Antischistosomal19
11. Herbicidal20
12. Insecticidal21
13. Pesticidal22
14. Hypoglycemic23

Vergne Fabrice et al.24 have synthesized 1,3,4-thiadiazole derivatives (12) and screened for their anti-inflammatory, anticancer and anti-HIV activity. Laddi U.V. et al.25 have discovered thiadiazoles possessing antimicrobial and antituberculosis activity. D.A. Ibrahim26 has reported thiadiazoles as anti-tumor agents. Mohd. Amir et al.27 have investigated 1,3,4-thiadiazoles and tested for analgesic activity. Vinod Mathew et al.28 have prepared thiadiazole derivatives showed antifungal and antibacterial activity.

\[\text{(12)} \]

Celine Chazalete et al.29 have synthesized acetazolamide (13) possessing diuretics and antiglaucoma activity. V S. Palekar et al.30 have synthesized 1,3,4-thiadiazole derivatives and screened for their anti-inflammatory, antibacterial activity. C. X. Tan et al.31 have investigated 1,3,4-thiadiazoles and tested for electrochemical properties. Bernard Masercel et al.32 have synthesized 1,3,4-thiadiazoles possessing potent carbonic anhydrase inhibitor properties and also prepared 5-valproyl amino 1,3,4-thiadiazole-2-sulphonamide (14) as strong anticonvulsant.
T M. Abdel-Rahman33 has prepared 1,3,4-thiadiazole derivatives and possessing anticancer activity. A. M. Taha34 synthesized thiadiazoles containing anti-microbial activity. J. M. Colacino et al.35 have documented anti-influenza virus activity of thiadiazoles. L. M. Thomasco et al.36 have prepared 1,3,4-thiadiazole (15) possessing potent antibacterial activity against Gram positive and Gram negative organisms. S. A. Carvalho and co-workers37 have documented antitrypanosomal profile of 1,3,4-thiadiazole derivatives (16). Zahra Kiani et al.38 have discovered thiadiazoles as antituberculosis agent.

Alireza faroumadi et al.39 have synthesized 1,3,4-thiadiazoles (17) and studied their leishmanicidal activity. Hatice Dogan et al.40 have prepared 2,5-disubstituted-1,3,4-thiadiazolo derivatives as anticonvulsant and antimicrobial agent. Nalan Terzioglu and Aysel Gursoy41 have discovered thiadiazoles and studied their anticancer activity.
Alireza Foroumadi and co-workers42 have documented antituberculosis activity and cytotoxicity of 1,3,4-thiadiazoles.

\[
\begin{array}{c}
\text{N} \\
\text{S} \\
\text{N} \\
\text{N}
\end{array}
\]

\[X = O, S \quad Y = \text{CH}_2, \text{O, NR} \] \hspace{1cm} (17)

S. Karakus and S. Rollas43 have screened thiadiazoles for their antituberculosis activity. Jui-Yi Chou et al.44 have synthesized thiadiazoles and reported them as anticancer agents.

Work done from our laboratory

K. M. Thaker45 have synthesized 2-(3',5'-dichlorobenzo[b]thiophen-2'-yl)-5-arylarnino-1,3,4-thiadiazoles from triazole. S. L. Vasoya46 have synthesized some new thiosemicarbazide and 1,3,4-thiadiazole heterocycles bearing the benzo[b]thiophene nucleus as potent antitubercular and antimicrobial agents.

In light of wide varities of therapeutic activities exhibited by thiadiazole, we have embarked upon the synthesis of some new thiadiazole derivatives which have been described in following sections.

SECTION-I: SYNTHESIS AND BIOLOGICAL SCREENING OF 6-ARYL-3-(4-ISOPROPYLPHENYL)-[1,2,4]TRIAZOLO[3,4-b][1,3,4]THIADIAZOLES.

SECTION-II: SYNTHESIS AND BIOLOGICAL SCREENING OF 5,6-DIHYDRO-6-ARYL-3-(4-ISOPROPYLPHENYL)-[1,2,4]TRIAZOLO[3,4-b][1,3,4]THIADIAZOLES
SECTION-I

SYNTHESIS AND BIOLOGICAL SCREENING OF 6-ARYL-3-(4-ISOPROPYL-PHENYL)-[1,2,4]TRIAZOLE[3,4-b][1,3,4]THIADIAZOLEs.

Thiadiazole derivatives are associated with broad spectrum of biological activities. In view of these finding it appeared of interest to synthesize some newer thiadiazole derivatives, with better potency. Thiadiazoles of type (I) have been prepared by cyclocondensation of 1-amino-3-[4-(propan-2-yl) phenyl]-1H-1,2,4-triazole-5-thiol with different aromatic acids in the presence of POCl₃ as shown in reaction scheme.

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and ¹H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger*, *Candida albicans* at a concentration of 2000/1000/500 µg/ml. The biological activities of the synthesized compounds have been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.1b.
ANTIMICROBIAL ACTIVITY

<table>
<thead>
<tr>
<th>Method</th>
<th>Mueller Hinton Agar Medium Method<sup>51</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram Positive Cocci</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Gram positive Rods</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>Gram Negative Rods</td>
<td>Escherichia coli, Salmonella Paratyphi</td>
</tr>
<tr>
<td>Multicellular Fungi</td>
<td>Aspergillus niger</td>
</tr>
<tr>
<td>Unicellular Fungi</td>
<td>Candida albicans</td>
</tr>
</tbody>
</table>

Concentration	2000 μg / ml, 1000 μg / ml, 500 μg /ml
Solvent	DMSO
Standard drugs	Ciprofloxacin
Studies on chemical...

IR SPECTRAL STUDIES OF 6-(4-CHLOROPHENYL)-3-(4-ISOPROPYLPHENYL)-[1,2,4]TRIAZOLE[3,4-b][1,3,4]THIADIAZOLE

![IR Spectra](image)

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm\(^{-1}\) (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm(^{-1})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Reported</td>
</tr>
<tr>
<td>Alkane</td>
<td>C-H str.</td>
<td>2958</td>
<td>2975-2950</td>
</tr>
<tr>
<td></td>
<td>C-H str.</td>
<td>2889</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1460</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1344</td>
<td>1385-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>3055</td>
<td>3080-3030</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1518</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H i.p. (def)</td>
<td>1066</td>
<td>1145-1090</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1014</td>
<td>1070-1000</td>
</tr>
<tr>
<td>Isopropyl</td>
<td>-CH(CH(_3))(_2)</td>
<td>2889</td>
<td>2800-2900</td>
</tr>
<tr>
<td>Triazole</td>
<td>C=N str.</td>
<td>1593</td>
<td>1612-1593</td>
</tr>
<tr>
<td></td>
<td>C-N str.</td>
<td>1344</td>
<td>1380-1310</td>
</tr>
<tr>
<td></td>
<td>C-N-C str.</td>
<td>1170</td>
<td>1146-1132</td>
</tr>
<tr>
<td></td>
<td>N-N str.</td>
<td>1014</td>
<td>1050-1010</td>
</tr>
<tr>
<td>Thiadiazole</td>
<td>C-S-C str.</td>
<td>698</td>
<td>720-570</td>
</tr>
<tr>
<td>Halide</td>
<td>C-Cl str.</td>
<td>769</td>
<td>800-600</td>
</tr>
</tbody>
</table>
Studies on chemical...

NMR SPECTRAL STUDIES OF 6-(4-CHLOROPHENYL)-3-(4-ISOPROPYLPHENYL)-[1,2,4]TRIAZOLO[3,4-b][1,3,4]THIADIAZOLE

Instrumental Standard: TMS; **Solvent:** CDCl$_3$; **Instrument:** BRUKER Spectrometer (400MHz)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.26-1.28</td>
<td>6H</td>
<td>doublet</td>
<td>-CH$_3$</td>
<td>6.88</td>
</tr>
<tr>
<td>2</td>
<td>2.96-3.00</td>
<td>1H</td>
<td>multiplet</td>
<td>-CH</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>7.31-7.34</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Ha-a'</td>
<td>8.2</td>
</tr>
<tr>
<td>4</td>
<td>7.36-7.38</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hb,b'</td>
<td>8.4</td>
</tr>
<tr>
<td>5</td>
<td>7.72-7.74</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hc,c'</td>
<td>8.28</td>
</tr>
<tr>
<td>6</td>
<td>7.85-7.87</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hd,d'</td>
<td>8.24</td>
</tr>
</tbody>
</table>
Studies on chemical…

Expanded aromatic region of NMR spectra

MASS SPECTRAL STUDIES OF 6-(4-CHLOROPHENYL)-3-(4-ISOPROPYLPHENYL)-[1,2,4]TRIAZOLO[3,4-b][1,3,4]THIADIAZOLE

m/z = 354

Thiadiazole
Studies on chemical...

PROPOSED MASS FRAGMENTATION OF 6-(4-CHLOROPHENYL)-3-(4-ISOPROPYLPHENYL)-[1,2,4]TRIAZOLO[3,4-b][1,3,4]THIADIAZOLE

\[
\text{m/z = 284} \quad C_{15}H_{16}N_4S \\
\text{m/z = 306} \quad C_{17}H_{14}N_4S \\
\text{m/z = 310 (M\(^-\))} \quad C_{17}H_{18}N_4S \\
\text{m/z = 270 (M\(^-\))} \quad C_{14}H_{14}N_4S \\
\text{m/z = 250 (M\(^-\))} \quad C_{10}H_{7}ClN_4S \\
\text{m/z = 202} \quad C_{9}H_{5}N_4S
\]
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] **Preparation of Potassium 4-isopropylbenzyl dithiocarbamate.**

To a mixture of potassium hydroxide (8.40g, 0.15mol) and 4-isopropyl benzohydrazide (17.8g, 0.1mol) in methanol (25 ml), carbon disulphide (11.4g, 0.15mol) was added. This mixture was stirred for 12-14 hrs. It was then diluted with dry ether (200 ml) and thus the solid obtained was filtered and washed with ether and dried. There is no need to purify the salt for further reaction.

[B] **Preparation of 1-Amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazole-5-thiol.**

A suspension of the potassium salt (29.2g, 0.1mol), hydrazine hydrate (10 ml, 0.2mol) and water (2 ml) was refluxed with stirring for 3 hrs. The color of the reaction mixture changed to green, hydrogen sulfide was evolved (lead acetate paper and odor) and a homogeneous solution resulted. Dilute the solution with cold water (100 ml) and neutralized with glacial acetic acid, precipitated a white solid. The product was filtered, washed with cold water and crystallized from dioxane yield 60%, m.p. 190°C.

[C] **Preparation of 6-(4-Chlorophenyl)-3-(4-isoproplyphenyl)-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazole.**

A mixture of p-chloro benzoic acid (1.56g, 0.01mol) and 1-amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazole-5-thiol (2.34g, 0.01mol) in POCl₃ (25 ml) was refluxed for 10 hrs. The reaction mixture was poured onto crushed ice and thus solid separated out was filtered, washed with water and crystallized from...
Studies on chemical... methanol. Yield 64%, m.p. 210 °C Anal.Calcd. For C_{18}H_{15}ClN_{4}S; C, 60.92; H, 4.26;
N, 15.79%; Found: C, 61.33; H, 4.39; N, 15.93 %

Similarly other thiadiazoles were prepared and the physical constants are recorded in Table No.1a.

[D] Antimicrobial activity of 6-Aryl-3-(4-isopropylphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles.

All the compounds have been evaluated for antimicrobial activity as described under.

➢ Preparation of Agar dilution plates

(1) Appropriate dilutions i.e. 1 ml quantity of antimicrobial solution are added to mueller hinton agar (19 ml quantity) that have been allowed to equilibrate in a water bath to 45 to 50 °C. One part of antimicrobial solution is added to nine parts of liquid agar.

(2) The agar and antimicrobial solution were mixed thoroughly and the mixture was poured into borosil glass petri dishes having 9 cm diameter on a level surface to result in an agar depth of 3 to 4 mm.

(3) The plates should be poured as quickly after mixing as possible to prevent cooling and partial solidification in the mixing container, avoiding bubbles.

(4) The agar was allowed to solidify at room temperature, and the plates were either used immediately or stored in sealed plastic bags at 2 to 8 °C for up to five days for reference work, or longer for routine tests.

(5) Plates stored at 2-8 °C were allowed to equilibrate at room temperature before use, assuring that the agar surface was dry before inoculating the plates. If necessary, plates were placed in an incubator or laminar flow hood for approximately 30 minutes with their lids. It helps agar to hasten drying of the agar surface.
Preparation of solutions of antimicrobial agents to be incorporated into the agar based medium:

10 mg of the antimicrobial agent was dissolved in 5 ml of DMSO to prepare the main stock of the compound to be tested. 1 ml of this main stock was added to 19 ml of mueller hinton agar medium to take the final concentration of 500 μg / ml in the agar medium. The main stock solution was further diluted in demineralized water by two fold dilution procedure to obtain the desired concentration in the agar medium, i.e. 2000 μg / ml, 1000 μg / ml, 500 μg/ml.

Preparation of inoculum of the test cultures:

One loopful of culture from the slant was inoculated into 5 ml mueller hinton broth in a test tube. The tube was incubated at 32 °C for 4 to 6 hours till the absorbance at 625 nm, equals that of 0.5 mac farland standards. (Section 5, NCCL guidelines). The absorbance readings were taken against a sterile mueller hinton broth media blank. The density of the suspension was adjusted to 10^8 colony forming units (CFU) per milliliter by comparing its turbidity to a mac farland 0.5 BaSO₄ standard.

Preparation of 0.5 Mac Farland standard:

It was used as a reference for turbidity measurement for bacterial cultures before they were used as inoculum for spot inoculate the mueller hinton agar media containing antimicrobial agents. Briefly, 0.5 ml of 1.175% w/v BaCl₂ solution was added to 99.5 ml of 1 % v/v H₂SO₄ solution with constant stirring, the absorbance of the solution was measured 625nm against demineralized water blank by UV spectrophotometer. The absorbance was in the range of 0.08 to 0.1 optical densities.

Interpretation of Results:

(1) In case of positive control, plate due to complete absence of antimicrobial agent and its solvent bacterial / fungal cultures gave luxuriant growth.

(2) In the solvent control plate inhibition of growth of microbes due to presence of
Studies on chemical...

organic solvent DMSO.

(3) The microbial cultures, if shown 1-5 colonies per spot inoculated instead of confluent growth as in the control plate, it was considered to be inhibited by test antimicrobial compounds.

(4) The microorganisms that were sensitive to the concentration of antimicrobial in mueller hinton agar plate did not produce a circle of growth at the inoculum site.

(5) The microbes that were resistant to it appeared as circular colonies. The agar plates were marked with a grid so that each microorganism could be identified by a number.

➢ Antibacterial Activity Determination:

Organic compounds may be bacteriostatic or bacteriocidal for microbial cultures. To check this, from the mueller hinton agar plates (showing no visible growth of bacteria), sub culturing was carried out on nutrient agar plates (Collins, 1967). After streaking, nutrient agar plates were incubated for 24 hrs at 37°C. Then after observation was made to see the colonies formed. If colonies were found, the dilution was considered as bacteriostatic and if no colonies observed, it was considered as bactericidal. Bacteriocidal dilutions of the organic compounds were considered as exact minimum inhibitory concentration (MIC) for a particular organic compound.

➢ Antifungal Activity Determination:

For fungal cultures the fungal media yeast nitrogen base agar plate (YNBG) 6.7 g and glucose 10 g, dissolved in 100 ml of distilled water and filter sterilized was used. The inoculum was prepared from 3-4 days old sabouraud’s dextrose agar slants. The growth was uniformly mixed with distilled water. The Size of inoculum prepared for inoculating YNBG agar plates was $10^2–10^3$ cfu/ml, adjusted with mac farland
solution. After inoculation of properly diluted fungal solution, the plates were incubated at 37 °C for 48 hrs.

Antimicrobial testing were carried out as described in part - I, Section - I (D). The zones of inhibition of test solutions are recorded in Table No. 1b.
Studies on chemical...

Table-1a: Physical constants of 6-Aryl-3-(4-isopropylphenyl)-[1,2,4]triazole [3,4-\(b\)][1,3,4]thiadiazoles.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution R</th>
<th>Molecular Formula/ Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition Calcd./Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>4-OCH(_3)-C(_6)H(_4)-</td>
<td>C({19})H({18})N(_4)OS</td>
<td>350.43</td>
<td>250</td>
<td>65.12 (5.18)</td>
</tr>
<tr>
<td>1b</td>
<td>2,4-(OH)(_2)-C(_6)H(_4)-</td>
<td>C({18})H({16})N(_2)O(_2)S</td>
<td>352.41</td>
<td>195</td>
<td>61.35 (4.58)</td>
</tr>
<tr>
<td>1c</td>
<td>2-CH(_3)-C(_6)H(_4)-</td>
<td>C({18})H({18})N(_4)S</td>
<td>334.43</td>
<td>180</td>
<td>68.23 (5.42)</td>
</tr>
<tr>
<td>1d</td>
<td>3-OCH(_3)-C(_6)H(_5)-C(_6)H(_4)-</td>
<td>C({24})H({20})N(_4)OS</td>
<td>412.50</td>
<td>190</td>
<td>69.88 (69.34)</td>
</tr>
<tr>
<td>1e</td>
<td>4-Br-C(_6)H(_4)-</td>
<td>C({18})H({15})BrN(_4)S</td>
<td>399.30</td>
<td>230</td>
<td>54.14 (3.79)</td>
</tr>
<tr>
<td>1f</td>
<td>4-Cl-C(_6)H(_4)-</td>
<td>C({18})H({15})ClN(_5)S</td>
<td>354.85</td>
<td>245</td>
<td>60.92 (60.86)</td>
</tr>
<tr>
<td>1g</td>
<td>4-NO(_2)-C(_6)H(_4)-</td>
<td>C({18})H({15})N(_5)O(_2)S</td>
<td>365.40</td>
<td>240</td>
<td>59.16 (59.09)</td>
</tr>
<tr>
<td>1h</td>
<td>3-NO(_2)-C(_6)H(_4)-</td>
<td>C({18})H({15})N(_5)O(_2)S</td>
<td>365.40</td>
<td>210</td>
<td>59.16 (59.01)</td>
</tr>
<tr>
<td>1i</td>
<td>2-OH-C(_6)H(_4)-</td>
<td>C({18})H({16})N(_4)OS</td>
<td>336.41</td>
<td>190</td>
<td>64.26 (64.08)</td>
</tr>
<tr>
<td>1j</td>
<td>2-Cl-C(_6)H(_4)-</td>
<td>C({18})H({15})ClN(_5)S</td>
<td>354.85</td>
<td>165</td>
<td>60.92 (61.35)</td>
</tr>
</tbody>
</table>
TABLE 1A: ANTIMICROBIAL ACTIVITY OF 6-ARYL-3-(4- ISOPROPYLPHENYL)-[1,2,4] TRIAZOLO [3,4-b] [1,3,4] THIADIAZOLES (in µg/ml)

<table>
<thead>
<tr>
<th>No.</th>
<th>Code No.</th>
<th>Antibacterial activity</th>
<th>Antifungal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gram +ve Bacteria</td>
<td>Gram -ve Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>1.</td>
<td>1a</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2.</td>
<td>1b</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3.</td>
<td>1c</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4.</td>
<td>1d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5.</td>
<td>1e</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>1f</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>1g</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8.</td>
<td>1h</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9.</td>
<td>1i</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10.</td>
<td>1j</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Where (+) = New synthesized compounds were active against microorganism

(-) = New synthesized compounds were inactive against microorganism
Studies on chemical…

Thiadiazole
SYNTHESIS AND BIOLOGICAL SCREENING OF 5,6-DIHYDRO-6-ARYL-3-(4-ISOPROPYLPHENYL)[-1,2,4]TRIAZOLO[3,4-b][1,3,4]THIADIAZOLEs

Thiadiazole derivatives are endowed with variety of biological activities. Looking to the interesting properties of thiadiazoles, it was considered worthwhile to synthesize a series of 5,6-dihydro-6-aryl-3-(4-isopropylphenyl)[-1,2,4]triazoles[3,4-b][1,3,4] thiadiazoles of type (II) for obtaining biologically potent agents. Thiadiazoles of type (II) have been synthesized by cyclocondensation of 1-amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazole-5-thiol with different aromatic aldehydes in presence of p-TsOH (p-toluene sulphonic acid) as a catalyst, as shown under.

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and ^1H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their in vitro biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards Aspergillus niger, Candida albicans at a concentration of 2000/1000/500 µg/ml. The biological activity of the synthesized compounds has been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.2b.
Studies on chemical...

IR SPECTRUM OF 5,6-DIHYDRO-3-(4-ISOPROPYLPHENYL)-6-(4-NITRO-PHENYL)-[1,2,4]TRIZOLO[3,4-b][1,3,4]THIADIAZOLE

![IR Spectrum Image]

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm⁻¹</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Reported</td>
</tr>
<tr>
<td>Alkane</td>
<td>C-H str.</td>
<td>2962</td>
<td>2975-2950</td>
</tr>
<tr>
<td></td>
<td>C-H str.</td>
<td>2887</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1458</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1344</td>
<td>1385-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>3059</td>
<td>3080-3030</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1525</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H i.p. (def)</td>
<td>1068</td>
<td>1145-1090</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1014</td>
<td>1070-1000</td>
</tr>
<tr>
<td>Isopropyl</td>
<td>-CH(CH₃)₂</td>
<td>2887</td>
<td>2800-2900</td>
</tr>
<tr>
<td>Triazole</td>
<td>C=N str.</td>
<td>1595</td>
<td>1612-1593</td>
</tr>
<tr>
<td></td>
<td>C-N str.</td>
<td>1344</td>
<td>1380-1310</td>
</tr>
<tr>
<td></td>
<td>C-N-C str.</td>
<td>1174</td>
<td>1176-1132</td>
</tr>
<tr>
<td></td>
<td>N-N str.</td>
<td>1014</td>
<td>1050-1010</td>
</tr>
<tr>
<td>Thiadiazole</td>
<td>C-S-C str.</td>
<td>682</td>
<td>720-570</td>
</tr>
<tr>
<td>Nitro</td>
<td>N=O str</td>
<td>1525</td>
<td>1560-1515</td>
</tr>
</tbody>
</table>

Thiadiazole
Studies on chemical...

NMR SPECTRAL STUDIES OF 5,6-DIHYDRO-3-(4-ISOPROPYLPHENYL)-[1,2,4]TRIZOLO[3,4-b][1,3,4]THIADIAZOLE

Instrumental Standard : TMS; Solvent: CDCl₃ ; Instrument : BRUKER Spectrometer (400MHz)

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.26-1.33</td>
<td>6H</td>
<td>doublet</td>
<td>-CH₃</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>2.18</td>
<td>1H</td>
<td>singlet</td>
<td>-CH</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>2.93-3.03</td>
<td>1H</td>
<td>multiplet</td>
<td>-CH</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>7.29-7.39</td>
<td>2H</td>
<td>multiplet</td>
<td>-Ar-Ha-a'</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>7.76-7.90</td>
<td>2H</td>
<td>multiplet</td>
<td>-Ar-Hb,b'</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>7.95-8.05</td>
<td>2H</td>
<td>multiplet</td>
<td>-Ar-Hc,c'</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>8.32-8.35</td>
<td>2H</td>
<td>multiplet</td>
<td>-Ar-Hd,d'</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>8.71</td>
<td>1H</td>
<td>singlet</td>
<td>-NH</td>
<td>-</td>
</tr>
</tbody>
</table>
Studies on chemical...

Expanded region of Aromatic region

MASS SPECTRAL STUDIES OF 5,6-DIHYDRO-3-(4-ISOPROPYLPHENYL)-
6-(4-NITROPHENYL)-[1,2,4]TRIZOLO[3,4-b][1,3,4]THIADIAZOLE

DEPARTMENT OF CHEMISTRY
(DST-FIST Funded & UGC-SAP Sponsored)
SAURASHTRA UNIVERSITY
RAJKOT-360005

Thiadiazole
PROPOSED MASS FRAGMENTATION OF 5,6-DIHYDRO -3-(4-ISOPROPYLPHENYL)-6-(4-NITROPHENYL)-[1,2,4]TRIZOLO[3,4-b][1,3,4]THIADIAZOLE.
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] Preparation of Potassium 4-isopropylbenzyl dithiocarbamate

See Part-I, Section-I [A]

[B] Preparation of 1-Amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazole-5-thiol.

See Part-I, Section-I [B]

[C] Preparation of 5,6-Dihydro-3-(4-isopropylphenyl)-6(4-Nitrophenyl)-[1,2,4]triazole [3,4-b][1,3,4]thiadiazole

A mixture of 1-amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazole-5-thiol (2.34g, 0.01mol), p-nitrobenzaldehyde (1.65g, 0.01mol) and p-Ts-OH (50 mg) in dry DMF (50 ml) was refluxed with stirring for 10 hrs. The reaction mixture was poured on to crushed ice and thus solid separated was filtered, washed with water and crystallized from methanol yield 60%, m.p. 265°C Anal. Calcd. For C_{18}H_{17}N_{5}O_{2}S; C, 58.84; H,4.66; N,19.06 %; Found: C,58.53; H,4.93; N,19.32 %.

Similarly other aromatic aldehyde has been condensed. The physical constants are recorded in Table No. 2a.

[D] Antimicrobial activity of 5,6-Dihydro-6-aryl-3-(4-isopropylphenyl)-[1,2,4]triazole [3,4-b][1,3,4]thiadiazoles.

Antimicrobial testing was carried out as described in Part-(I), Section-I (D). The zones of inhibition of the test solution are recorded in Table No. 2b.
Table-2a: Physical constants of 5,6-Dihydro-6-aryl-3-(4-isopropylphenyl)-[1,2,4]triazole [3,4-b][1,3,4]thiadiazoles

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution R</th>
<th>Molecular Formula/Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition Calcd./Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>2a</td>
<td>4-OCH₃-C₆H₅</td>
<td>C₁₉H₂₉N₃OS 352.45</td>
<td>231</td>
<td>58</td>
<td>64.75 (65.19)</td>
</tr>
<tr>
<td>2b</td>
<td>3,4-(OCH₃)₂-C₆H₅</td>
<td>C₂₂H₂₅N₂O₂S 382.47</td>
<td>196</td>
<td>54</td>
<td>62.80 (62.16)</td>
</tr>
<tr>
<td>2c</td>
<td>4-NO₂-C₆H₅</td>
<td>C₁₉H₁₇N₂O₂S 367.42</td>
<td>180</td>
<td>60</td>
<td>58.84 (58.79)</td>
</tr>
<tr>
<td>2d</td>
<td>2-NO₂-C₆H₅</td>
<td>C₁₉H₁₇N₂O₂S 367.42</td>
<td>185</td>
<td>61</td>
<td>58.84 (58.53)</td>
</tr>
<tr>
<td>2e</td>
<td>4-OH-C₆H₅</td>
<td>C₁₉H₁₈N₂OS 338.42</td>
<td>221</td>
<td>64</td>
<td>63.88 (63.75)</td>
</tr>
<tr>
<td>2f</td>
<td>C₆H₅</td>
<td>C₁₉H₁₈N₄S 322.42</td>
<td>195</td>
<td>53</td>
<td>67.05 (66.94)</td>
</tr>
<tr>
<td>2g</td>
<td>3-Cl-C₆H₅</td>
<td>C₁₉H₁₇ClN₂S 356.87</td>
<td>180</td>
<td>49</td>
<td>60.58 (60.36)</td>
</tr>
<tr>
<td>2h</td>
<td>4-CH₃-C₆H₅</td>
<td>C₁₉H₂₀N₂S 336.45</td>
<td>154</td>
<td>45</td>
<td>67.83 (67.64)</td>
</tr>
<tr>
<td>2i</td>
<td>4-F-C₆H₅</td>
<td>C₁₉H₁₈FN₂S 340.41</td>
<td>184</td>
<td>58</td>
<td>63.51 (63.27)</td>
</tr>
<tr>
<td>2j</td>
<td>2-OH-C₆H₅</td>
<td>C₁₉H₁₈N₂OS 338.42</td>
<td>193</td>
<td>45</td>
<td>63.88 (63.68)</td>
</tr>
<tr>
<td>No.</td>
<td>Code No.</td>
<td>Antibacterial activity</td>
<td>Antifungal activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gram +ve Bacteria</td>
<td>Gram -ve Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Escherichia coli</td>
<td>Salmonella paratyphi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aspergillus niger</td>
<td>Candida albicans</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uni/Multicellular Fungi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>1000</td>
<td>500</td>
<td>2000</td>
</tr>
<tr>
<td>1.</td>
<td>2a</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2.</td>
<td>2b</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3.</td>
<td>2c</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4.</td>
<td>2d</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5.</td>
<td>2e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>6.</td>
<td>2f</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>7.</td>
<td>2g</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8.</td>
<td>2h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9.</td>
<td>2i</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>10.</td>
<td>2j</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Where (+) = New synthesized compounds were active against microorganism
(-) = New synthesized compounds were inactive against microorganism
Studies on chemical...
Studies on chemical...

REFERENCES

Studies on chemical...

Part- A

(Part-II)

Studies on 1,3,4-Thiadiazine Derivatives
INTRODUCTION

Thiadiazine is a six membered heterocyclic ring system having two nitrogen atoms and one sulphur atom. These may be of four types $2H$-$1,2,4$-Thiadiazine (1), $2H$-$1,2,6$-Thiadiazine (2), $2H$-$1,3,4$-Thiadiazine (3) and $2H$-$1,3,5$-Thiadiazine (4).

The literature survey reveals that there are not many examples of triazoles fused with thiadiazines. Those incorporating the N-C-S linkage as in the skeleton of $1,2,4$-triazolo[3,4-b][1,3,4]thiadiazine exhibit a broad spectrum of antimicrobial activity.$^{1-3}$ Many $1,3,4$-thiadiazine derivatives involve in many biological processes and serves as a medicinally interesting compounds.

SYNTHETIC ASPECT

Different methods for the preparation of $1,3,4$-thiadiazine derivatives described in literature are as follows.

1. M. M. Heravi et al.4 have reported that the cyclization of 4-amino-3-mercapto 6-methyl-$[1,2,4]$triazine-5-one with phenacyl bromide to give $1,3,4$-thiadiazine derivatives (5).

2. K. S. Bhat et al.5 have designed thiadiazine ring system (6) by the reaction of triazole with phenacyl bromide.
3. B. Shivarama Holla et al.6 have synthesized triazole thiadiazines (7) by the cyclization of 2,3-dibromo-1-aryl-3-[5-(p-nitrophenyl)-2-furyl]-2-propen-1-ones and substituted 1,2,4-triazole.

4. S. Peri Aytaç et al.7 have prepared 1,3,4-thiadiazine by the condensation of 4-amino-3-substituted-1,2,4-triazole-5-thiones with phenacyl bromides.

5. W. L. Alberecht et al.8 have synthesized s-triazolocycloalkyl hydrothiadiazines (8) by the cyclization of α-haloketones with 5-substituted-4-amino-$4H$-1,2,4-triazole-3-thiols.

\textbf{Thiadiazine}
6. N. N. Kuzmich et al.9 have synthesized triazolothiadiazines (9) by the reaction of thiobenzohydrazide with oxalyl chloride.

\[
\begin{align*}
\text{R}_1, \text{R}_2 &= \text{H or Ph} \\
\text{(9)}
\end{align*}
\]

BIOLOGICAL EVALUATION

Literature survey shows that various 1,3,4-thiadiazines have resulted in many potential drugs and are known to exhibit a broad spectrum of biological activities.

1,3,4-Thiadiazine derivatives possess wide range of therapeutic activities which are as under.

1. Antifungal10
2. Antibacterial11
3. Antimicrobial12
4. Antiinflammatory13
5. Cardiovascular14
6. AntiHIV15
7. Antidiabetic16
8. Antidepressant17
R. D. Patil and J. S. Biradar18 have reported triazole thiazolium derivatives as anthelmintic, anti-inflammatory and anticycatatic active agents (10). G. Turan-Zitouni et al.19 have demonstrated analgesic activity of triazole thiazolines (11).

G. Mazzone et al.20-21 reported 1,3,4-thiazolium derivatives as weak anti-inflammatory agent and also reported their analgesic activity. Jonas Rochus et al.22-23 have prepared new thiazolium derivatives useful as phosphodiesterase IV inhibitors (12) and cardiovascular agents (13).

Z. A. Kaplancıklı et al.24 have reported antimicrobial activity of thiazolines. Prakash Karegoudar et al.25 have documented thiazolium derivatives as anti-inflammatory agent. B. Kalluraya et al.26-27 have reported 3-substituted-7H-6-(6-bromo-3-coumarinyl)-s-triazolo[3,4,b][1,3,4]thiazolines and subjected to antibacterial activity (14).
B. A. Nadkarni et al.28 have reported anthelmintic activity of 1,3,4-thiadiazines. A. N. El-Shorbagi et al.29 renowned antimicrobial activity of thiadiazine derivatives. B. S. Holla et al.30 have also reported antibacterial and anticancer activity of 1,3,4-thiadiazines. C. B. Vicentini et al.31 have renowned thiadiazines as fungicides.

The diverse biological activities have been encountered in compounds containing triazolothiadiazine ring system. Therefore it was considered worthwhile to synthesize 1,3,4-thiadiazine derivatives which have been described as under.

SECTION-I: SYNTHESIS AND BIOLOGICAL SCREENING OF 6-ARYL-3-(4-ISOPROPYLPHENYL)-7H-[1,2,4]TRIAZOLE[3,4b][1,3,4] THIA Diazines.
SECTION-I

SYNTHESIS AND BIOLOGICAL SCREENING OF 6-ARYL-3-(4-ISOPROPYLPHENYL)-7H-[1,2,4]TRIAZOLO[3,4-b][1,3,4]THIADIAZINES.

Thiadiazine derivatives represent one of the most active class of compounds having a wide spectrum of biological activities. With an aim to getting better therapeutic agent, the preparation of 1,3,4-thiadiazine of type (IV) have been undertaken by the condensation of 1-amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazole-5-thiol with different substituted phenacyl bromides.

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and 1H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their in vitro biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards Aspergillus niger, Candida albicans at a concentration of 2000/1000/500 µg/ml. The biological activity of the synthesized compounds have been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.3b.
Studies on chemical...

IR SPECTRAL STUDIES OF 6-(4-FLUOROPHENYL)-3-(4-ISOPROPYL-PHENYL)-7H-[1,2,4]TRIAZOLO[3,4-b][1,3,4]THIADIAZINE.

![IR Spectra](image)

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm⁻¹</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Reported</td>
</tr>
<tr>
<td>Alkane</td>
<td>C-H str. (asym.)</td>
<td>2955</td>
<td>2975-2950</td>
</tr>
<tr>
<td></td>
<td>C-H str. (sym.)</td>
<td>2864</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def. (asym.)</td>
<td>1458</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1388</td>
<td>1385-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>3088</td>
<td>3095-3050</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1581</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H i.p. (def)</td>
<td>1103</td>
<td>1125-1000</td>
</tr>
<tr>
<td></td>
<td>C-H o.o.p. (def)</td>
<td>765</td>
<td>835-810</td>
</tr>
<tr>
<td>Isopropyl</td>
<td>-CH(CH₃)₂</td>
<td>2955</td>
<td>2800-2900</td>
</tr>
<tr>
<td>Triazole</td>
<td>C=N str.</td>
<td>1581</td>
<td>1650-1580</td>
</tr>
<tr>
<td></td>
<td>C-N str.</td>
<td>1014</td>
<td>1050-1010</td>
</tr>
<tr>
<td></td>
<td>N-N str.</td>
<td>1141</td>
<td>1220-1020</td>
</tr>
<tr>
<td>Thiadiazine</td>
<td>C-S-C str.</td>
<td>765</td>
<td>720-570</td>
</tr>
<tr>
<td>Halide</td>
<td>C-F str.</td>
<td>1141</td>
<td>1200-1000</td>
</tr>
</tbody>
</table>
NMR SPECTRAL STUDIES OF 6-(4-FLUOROPHENYL)-3-(4-ISOPROPYLPHENYL)-7H-[1,2,4]TRIAZOLE[3,4 b][1,3,4]THIADIAZINE.

Instrumental Standard : TMS; Solvent: CDCl₃; Instrument : BRUKER Spectrometer (400MHz)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.27-1.31</td>
<td>6H</td>
<td>doublet</td>
<td>-CH₃</td>
<td>6.92</td>
</tr>
<tr>
<td>2</td>
<td>2.97-3.01</td>
<td>1H</td>
<td>multiplet</td>
<td>-CH</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.95</td>
<td>2H</td>
<td>singlet</td>
<td>-CH₂</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.20-7.24</td>
<td>2H</td>
<td>triplet</td>
<td>-Ar-Ha,a'</td>
<td>8.56</td>
</tr>
<tr>
<td>5</td>
<td>7.36-7.38</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hb,b'</td>
<td>8.32</td>
</tr>
<tr>
<td>6</td>
<td>7.93-7.95</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hc,c'</td>
<td>8.32</td>
</tr>
<tr>
<td>7</td>
<td>8.10-8.14</td>
<td>2H</td>
<td>multiplet</td>
<td>-Ar-Hd,d'</td>
<td></td>
</tr>
</tbody>
</table>
Studies on chemical…

Expanded aromatic region of NMR spectra

Mass Spectral Studies of 6-(4-Fluorophenyl)-3-(4-Isopropylphenyl)-7H-[1,2,4] Triazo[3,4-b][1,3,4]Thiadiazine.

DEPARTMENT OF CHEMISTRY
(DST-FIST Funded & UGC-SAP Sponsored)
SAURASHTRA UNIVERSITY
RAJKOT-360005

68
Studies on chemical... PROPOSED MASS FRAGMENTATION OF 6-(4-FLUOROPHENYL)-3-(4-ISO PROPYLPHENYL)-7H-[1,2,4] TRIAZOLE[3,4-b][1,3,4] THIADIAZINE.

\[
\begin{align*}
\text{m/z} &= 216 & \text{C}_{10}\text{H}_8\text{N}_4\text{S} \\
\text{m/z} &= 244(M^{-1}) & \text{C}_{12}\text{H}_{12}\text{N}_4\text{S} \\
\text{m/z} &= 262(M^{-1}) & \text{C}_{12}\text{H}_{11}\text{FN}_4\text{S} \\
\text{m/z} &= 168(M^{-1}) & \text{C}_{8}\text{H}_8\text{N}_4\text{S} \\
\text{m/z} &= 352 & \text{C}_{19}\text{H}_{17}\text{FN}_4\text{S} \\
\text{m/z} &= 338(M^{-1}) & \text{C}_{18}\text{H}_{15}\text{FN}_4\text{S} \\
\text{m/z} &= 147 & \text{C}_{10}\text{H}_3\text{N} \\
\text{m/z} &= 130 & \text{C}_3\text{H}_6\text{N}_4\text{S} \\
\text{m/z} &= 102(M^{+1}) & \text{C}_3\text{H}_6\text{N}_2\text{S} \\
\end{align*}
\]
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] Preparation of Potassium 4-isopropylbenzyl dithiocarbamate

See Part-I, Section-I (A).

[B] Preparation of 1-Amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazole-5-thiol

See Part-I, Section-I (B).

[C] Preparation of 4-Fluorophenacyl bromide.

To a well stirred solution of 4-fluoro acetonone (1.38g, 0.01mol) in glacial acetic acid (20 ml) and hydrochloric acid (0.11 ml) at ambient temperature, bromine (0.8g, 0.01mol) in glacial acetic acid (10 ml) was added over a period of 1hr. The reaction mixture was diluted with water (500 ml) and extracted with chloroform. The combined extracts were dried (over MgSO₄) and concentrated to give 4-fluorophenacyl bromide.

Similarly other substituted phenacyl bromides were prepared by using literature methods.32

[D] Preparation of 6-(4-Fluorophenyl)-3-(4-isopropylphenyl)-7H-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazine.

A mixture of 1-amino-3-[4-(propan-2-yl)phenyl]-1H-1,2,4-triazolo-5-thiol (2.34g, 0.01mol) and p-fluoro phenacyl bromide (2.17g, 0.01mol) in dry methanol (50 ml) was heated under reflux for 5 hrs. The content was cooled and neutralized with...
aqueous potassium carbonate solution. The solid separated was filtered out and washed with water. The product was crystallized from ethanol. Yield 57%, m.p. 210 °C. Anal. Calcd. For C$_{19}$H$_{17}$FN$_4$S; C, 64.75; H, 4.86; N, 15.90%; Found: C, 64.68; H, 4.67; N, 15.79%

Similarly other phenacyl bromides have been condensed. The physical constants are recorded in Table No.3a.

[E] **Antimicrobial activity of 6-Aryl-3-(4-isopropylphenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines.**

Antimicrobial testing was carried out as described in part-(I), section-I(D). The zones of inhibition of compounds are recorded in Table No.3b.
Table-3a: Physical constants of 3-(4-Isopropylphenyl)-6-aryl-7H-[1,2,4]triazolo[3,4-\(b\)][1,3,4] thia-diazines.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution R</th>
<th>Molecular Formula/ Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition Calcd./Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>4-F-C(_6)H(_4)</td>
<td>C({19})H({17})FN(_2)S</td>
<td>205</td>
<td>57</td>
<td>64.75 (64.68) 4.86 (4.67) 15.90 (15.79)</td>
</tr>
<tr>
<td>3b</td>
<td>4-Cl-C(_6)H(_4)</td>
<td>C({19})H({17})ClN(_2)S</td>
<td>180</td>
<td>45</td>
<td>61.86 (61.48) 4.65 (4.31) 15.19 (15.02)</td>
</tr>
<tr>
<td>3c</td>
<td>4-Br-C(_6)H(_4)</td>
<td>C({19})H({17})BrN(_2)S</td>
<td>205</td>
<td>40</td>
<td>55.21 (54.03) 4.15 (3.98) 13.55 (13.23)</td>
</tr>
<tr>
<td>3d</td>
<td>C(_6)H(_4)</td>
<td>C({19})H({18})N(_2)S</td>
<td>178</td>
<td>46</td>
<td>68.23 (68.08) 5.42 (5.16) 16.75 (16.49)</td>
</tr>
<tr>
<td>3e</td>
<td>4-NO(_2)-C(_6)H(_4)</td>
<td>C({19})H({18})N(_2)O(_2)S</td>
<td>169</td>
<td>56</td>
<td>60.14 (60.06) 4.52 (4.16) 18.46 (18.23)</td>
</tr>
<tr>
<td>3f</td>
<td>2-OH-C(_6)H(_4)</td>
<td>C({19})H({18})N(_2)OS</td>
<td>175</td>
<td>58</td>
<td>65.12 (65.09) 5.18 (4.86) 15.99 (15.71)</td>
</tr>
<tr>
<td>3g</td>
<td>4-OCH(_3)-C(_6)H(_4)</td>
<td>C({20})H({20})N(_2)OS</td>
<td>159</td>
<td>51</td>
<td>65.91 (65.48) 5.53 (5.37) 15.37 (15.22)</td>
</tr>
<tr>
<td>3h</td>
<td>4-CH(_3)-C(_6)H(_4)</td>
<td>C({20})H({20})N(_2)S</td>
<td>180</td>
<td>50</td>
<td>68.93 (68.74) 5.79 (5.47) 16.08 (16.01)</td>
</tr>
</tbody>
</table>
TABLE 3A: ANTIMICROBIAL ACTIVITY OF 6-ARYL-3-(4-ISOPROPYLPHENYL)-7\(H\)-[1,2,4]TRIAZOLO[3,4-\(b\)][1,3,4]THIADIAZINES. (in \(\mu\)g/ml)

No.	Code No.	Antibacterial activity				Antifungal activity										
		Gram +ve Bacteria	Gram -ve Bacteria	Uni/Multicellular Fungi												
		Staphylococcus aureus	*Bacillus subtilis*	*Escherichia coli*	*Salmonella paratyphi B*	*Aspergillus niger*	*Candida albicans*									
		2000	1000	500	2000	1000	500	2000	1000	500	2000	1000	500			
1.	3a	+	+	+	+	+	-	+	+	+	+	+	-	+	+	+
2.	3b	+	+	+	+	+	-	+	+	+	+	+	-	+	+	+
3.	3c	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
4.	3d	-	-	+	+	+	-	+	+	-	-	-	+	-	+	+
5.	3e	+	+	+	+	+	-	-	-	+	-	-	+	+	+	+
6.	3f	+	+	-	+	+	+	+	-	+	-	-	+	-	+	-
7.	3g	+	+	-	+	+	+	+	-	+	-	-	-	-	-	-
8.	3h	+	-	+	+	+	+	+	-	+	-	+	-	+	-	+

Where (+) = New synthesized compounds were active against microorganism

(-) = New synthesized compounds were inactive against microorganism
Studies on chemical…

Thiadiazine
Studies on chemical…

REFERENCES

Studies on chemical

Thiadiazine

75
Part- A

(Part-III)

Studies on 1,3,4- Oxadiazole Derivatives
INTRODUCTION

Oxadiazoles belong to an important group of heterocyclic compounds having –N=C–O– linkage. It is well documented that oxadiazole system contains the following members which are numbered by designating the hetero atoms at particular position.

\[
\begin{array}{cccc}
\text{1} & \text{2} & \text{3} & \text{4} \\
\end{array}
\]

1,3,4-Oxadiazole is a heterocyclic molecule with oxygen atom at 1 and two nitrogen atoms at 3 and 4 position. 1,3,4-Oxadiazole is a thermally stable aromatic molecule\(^1\). They have been known for about 80 years it is only in the last decade that investigations in this field have been intensified. This is because of large number of applications of 1,3,4-oxadiazoles in the most diverse areas viz. drug synthesis, dye stuff industry, heat resistant materials, heat resistant polymers and scintillators. Reviews of the relevant literature prior to 1965 are available\(^2\).

SYNTHETIC ASPECT

Most 1,3,4-oxadiazoles are best obtained by synthesis from acyclic precursors. Such reactions are ‘one bond’ or ‘two bond’ cyclization. Different methods for the synthesis have been cited in literature\(^3-8\).

1. Hansong Chen et al.\(^9\) have synthesized oxadiazoles (5) by the reaction of hydrazide and aromatic acid in presence of POCl\(_3\).

\[
\begin{array}{c}
\text{Et} \quad \text{Cl} \\
\text{N} \quad \text{N} \\
\text{O} \\
\text{CH}_3 \\
\text{NH}_2\text{NH}_2 \\
\text{Cl} \quad \text{R}_1 \text{COOH} \\
\end{array}
\]

\[
\text{Et} \quad \text{Cl} \\
\text{N} \quad \\
\text{N} \\
\text{O} \\
\text{CH}_3 \\
\text{R}_1 \text{COOH} \\
\]

(5)

2. D. Ramesh and B. Sreenivasan\(^10\) have synthesized 1,3,4-oxadiazoles (6) from
semicarbazide in presence of POCl_3.

3. K. Mogilaiah and B. Sakram11 have prepared 1,3,4-oxadiazole (7) from aceto-phenone-2-trifluoromethyl-1,8-naphthyridine-3-carbonyl hydrazone in presence of acetic anhydride.

4. Yu Yuve have reported microwave assisted synthesis protocol with 91% of the yield12.

5. L. Somogyi13 synthesized 1,3,4-oxadiazole (9) from several steps, from aryl hydrazide and aryl aldehyde.

6. Silica sulfuric acid catalyst used for the rapid and ecofriendly synthesis of 1,3,4-oxadiazoles (10) at ambient temperature by M. Dabiri et al14.

Oxadiazoles
Studies on chemical…

\[
\begin{align*}
R - & C(OEt)_3 + R_1^\text{NH-NH}_2 \xrightarrow{\text{Silica, } H_2SO_4, \text{MW}, 10\text{min}} \quad R^1 \quad \overset{\text{NH}}{\text{O}} \quad \overset{\text{N}}{\text{N}} \quad R \quad R_1
\end{align*}
\]

(10)

7. Green chemistry and one-pot, solvent-free using microwave radiated synthesis of 1,3,4-oxadiazoles (11) were reported by V. Polshettiwar

\[
\begin{align*}
R - & C(OEt)_3 + R_1^\text{NH-NH}_2 \xrightarrow{\text{MW}} \quad R^1 \quad \overset{\text{O}}{\text{N}} \quad \overset{\text{N}}{\text{N}} \quad R \quad R_1
\end{align*}
\]

(11)

BIOLOGICAL EVALUATION

2,5-Disubstituted-1,3,4-oxadiazole derivatives have been tested for various pharmacological activities, which have been summarized as under.

1. Antibacterial
2. Antiinflammatory
3. Analgesic
4. Antiviral and anticancer
5. Antihypertensive
6. Anticonvulsant
7. Antiproliferative
8. Antifungal
9. Cardiovascular
10. Herbicidal
11. Hypoglycemic
12. Hypnotic and Sedative
13. MAO inhibitor
14. Insecticidal
Bhardwaj Niti et al.30 have screened oxadiazoles for their antimicrobial activity. A. El-Azzouny et al.31 have synthesized 1,3,4-oxadiazole derivatives and evaluated for their analgesic, anti-inflammatory, ulcerogenic effects and inhibitory activity on plasma prostaglandin E\textsubscript{2} (PGE\textsubscript{2}) Level.

Santos Filho et al.32 have reported 1,3,4-oxadiazoles for their anti-inflammatory activity. Song Cao et al.33 have investigated some oxadiazoles possessing insecticidal activity. Krishna Kant Jha et al.34 have discovered oxadiazole derivatives and reported their antimycobacterial activity. Ali Almasired et al.35 have prepared 1,3,4-oxadiazoles of type (12) as anticonvulsant agent. Meria Grazia Mamolo et al.36 have synthesized 3-substituted-5-(pyridine-4-yl)-3\textit{H}-1,3,4-oxadiazole-2-one of type (13) and studied their antimycobacterial activity.

H. Rajak. et al.37 have reported antimicrobial activity of oxadiazole derivatives. J. A. Christopher. et al.38 have documented human immunodeficiency virus infection of 1,3,4-oxadiazole derivatives. B. Jayashankar et al.39 have synthesized some oxadiazoles as anti-inflammatory and analgesic agents. K. Subrahmany Bhat et al.40 have prepared new fluorine containing 1,3,4-oxadiazoles (14) and reported them as potential antibacterial and anticancer agents. T. P. Mohan et al.41 have synthesized 2,5-disubstituted-1,3,4-oxadiazole derivatives (15) and screened for their insecticidal activity.
Ronald Kim et al.\(^4\) have discovered oxadiazole derivatives useful as protease inhibitors. Mohd Amir and Kumar Shikha\(^5\) have documented anti-inflammatory, analgesic and ulcerogenic activity of some newly synthesized oxadiazoles. Ali A. et al.\(^6\) have investigated some oxadiazole derivatives possessing antimicrobial and anti-HIV-1 activity. Sherif A. et al.\(^7\) have reported oxadiazoles as potential antitumor and anti-HIV agents. Afshin Zarghi et al.\(^8\) have synthesized R-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles (16) possessing anticonvulsant activity. Mahamud Tareq et al.\(^9\) have synthesized 2,5-disubstituted-1,3,4-oxadiazoles (17) useful as tyrosinase inhibitors.

Work done from our laboratory

K. M. Thaker\(^{10}\) have synthesized 2-(3\',5\'-dichlorobenzo[b]thiophen-2\'-yl)-5-aryl-1,3,4-oxadiazoles in the presence of aromatic acid. S. L. Vasoya\(^{11}\) reported facile synthesis of some new azetidinones and acetyl oxadiazoles bearing benzo[b]thiophene nucleus as a potent biological active agent. Synthesis and antimicrobial activity of 2-aryl-5-(5\',7\'-diiodo-8\'-quinolinoxy)-1,3,4-oxadiazoles have been reported by H. S. Joshi\(^{12}\).
Thus with an effort to capitalize the biological potential of the heterocyclic system and to provide more interesting compounds for biological screening, we have undertaken the synthesis of several oxadiazoles which has been described as under.

SECTION-I : SYNTHESIS AND BIOLOGICAL SCREENING OF 2-(4-ISOPROPYLPHENYL)-5-ARYL-1,3,4-OXADIAZOLES
SECTION-I

SYNTHESIS AND BIOLOGICAL SCREENING OF 2-(4-ISOPROPYLPHENYL)-5-ARYL-1,3,4-OXADIAZOLE

Oxadiazole derivatives have been drawn the attention of chemist due to diversified biological activities associated with it. In view of these facts, it was contemplated to synthesize some newer oxadiazole derivatives with better potency. Oxadiazoles of type (IV) have been prepared by condensation of 4-isopropylbenzohydrazide with different aromatic acid in presence of POCl₃.

\[
\begin{align*}
\text{Type (IV) } & \text{R=Aryl} \\
\end{align*}
\]

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and \(^1\)H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their \textit{in vitro} biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards \textit{Aspergillus niger, Candida albicans} at a concentration of 2000/1000/500 µg/ml. The biological activity of the synthesized compounds have been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.4b.
Studies on chemical…

IR SPECTRAL STUDIES OF 2-(4-CHLOROPHENYL)-5-(4-ISOPROPYL-PHENYL)-1,3,4-OXADIAZOLE.

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm⁻¹</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Reported</td>
</tr>
<tr>
<td>Alkane</td>
<td>C-H str. (asym.)</td>
<td>2960</td>
<td>2975-2950</td>
</tr>
<tr>
<td></td>
<td>C-H str. (sym.)</td>
<td>2870</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def. (asym.)</td>
<td>1454</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1346</td>
<td>1385-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>3049</td>
<td>3080-3030</td>
</tr>
<tr>
<td></td>
<td>C≡C str.</td>
<td>1523</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H i.p.(def)</td>
<td>1062</td>
<td>1125-1000</td>
</tr>
<tr>
<td></td>
<td>C-H o.o.p. (def)</td>
<td>850</td>
<td>835-810</td>
</tr>
<tr>
<td>Isopropyl</td>
<td>CH(CH₃)₂</td>
<td>2870</td>
<td>2800-2900</td>
</tr>
<tr>
<td>Oxadiazole</td>
<td>C≡N str.</td>
<td>1606</td>
<td>1650-1580</td>
</tr>
<tr>
<td></td>
<td>-N-N- str.</td>
<td>1116</td>
<td>1220-1020</td>
</tr>
<tr>
<td></td>
<td>-C-O-C- str.</td>
<td>1062</td>
<td>1075-1020</td>
</tr>
<tr>
<td>Halide</td>
<td>C-Cl str.(asym.)</td>
<td>746</td>
<td>800-600</td>
</tr>
</tbody>
</table>

Oxadiazoles
Studies on chemical...

NMR SPECTRAL STUDIES OF 2-(4-CHLOROPHENYL)-5-(4-ISOPROPYLPHENYL)-1,3,4-OXADIAZOLE.

Instrumental Standard: TMS; Solvent: CDCl₃; Instrument: BRUKER Spectrometer (400MHz)

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.21-1.23</td>
<td>6H</td>
<td>doublet</td>
<td>-CH₃</td>
<td>6.96</td>
</tr>
<tr>
<td>2</td>
<td>2.88-2.95</td>
<td>1H</td>
<td>multiplet</td>
<td>-CH</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>7.30-7.32</td>
<td>2H</td>
<td>doublet</td>
<td>Ar-Ha,a'</td>
<td>8.28</td>
</tr>
<tr>
<td>4</td>
<td>7.42-7.44</td>
<td>2H</td>
<td>doublet</td>
<td>Ar-Hb,b'</td>
<td>11.32</td>
</tr>
<tr>
<td>5</td>
<td>7.97-8.0</td>
<td>4H</td>
<td>multiplet</td>
<td>Ar-H</td>
<td>-</td>
</tr>
</tbody>
</table>
Studies on chemical...

Expanded aromatic region of NMR spectra

MASS SPECTRAL STUDIES OF 2-(4-CHLOROPHENYL)-5-(4-ISOPROPYLPHENYL)-1,3,4-OXADIAZOLE.
PROPOSED MASS FRAGMENTATION OF 2-(4-CHLOROPHENYL)-5-(4-ISOPROPYLPHENYL)-1,3,4- OXADIAZOLE.
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] Preparation of 4-Isopropylbenzohydrazide.

A mixture of methyl 4-isopropylbenzoate (1.78g, 0.01mol) and hydrazine hydrate (2.0 ml, 0.02mol) in ethanol was refluxed in water bath for 2 hrs. The reaction mixture was poured onto crushed ice. Crude product was isolated and crystallized from ethanol.

[B] Preparation of 2-(4-Chlorophenyl)-5-(4-isopropylphenyl)-1,3,4-oxadiazole

A mixture of 4-Isopropylbenzohydrazide (1.78g, 0.01mol) and 4-chloro benzoic acid (1.56g, 0.01mol) in phosphorous oxychloride (10 ml) was refluxed for 6 hrs. The content was cooled, poured onto crushed ice and neutralized with sodium bicarbonate solution. Crude product was isolated and crystallized from ethanol. Yield 60%, m.p 78 °C Anal. Calcd C_{17}H_{15}ClN_{2}O; C,68.34; H,5.06; N,9.38 %; Found: C,68.70; H,4.83; N,9.49 %.

Similarly other oxadiazoles have been prepared. The physical data are recorded in table No. 4a.

[C] Antimicrobial activity of 2-(4-Isopropylphenyl)-5-aryl-1,3,4-oxadiazoles.

Antimicrobial testing was carried out as described in Part-I, Section (D). The zones inhibition of the compounds are recorded in Table No.4b.
Table-4a: Physical constants of 2-(4-Isopropylphenyl)-5-aryl-1,3,4-oxadiazoles

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution R</th>
<th>Molecular Formula/ Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition Calcd./Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>4a</td>
<td>4-OCH₃-C₆H₄-</td>
<td>C₁₇H₁₅N₂O₂ 294.34</td>
<td>240</td>
<td>68</td>
<td>73.45 (73.09) 6.16 (6.13) 9.52 (9.21)</td>
</tr>
<tr>
<td>4b</td>
<td>C₆H₅-</td>
<td>C₁₇H₁₅N₂O 264.32</td>
<td>210</td>
<td>54</td>
<td>77.25 (77.03) 6.10 (6.05) 10.60 (10.22)</td>
</tr>
<tr>
<td>4c</td>
<td>2-CH₃-C₆H₄-</td>
<td>C₁₇H₁₅N₂O 278.34</td>
<td>200</td>
<td>56</td>
<td>77.67 (77.61) 6.52 (6.26) 10.06 (10.01)</td>
</tr>
<tr>
<td>4d</td>
<td>4-Br-C₆H₄-</td>
<td>C₁₇H₁₅BrN₂O 343.21</td>
<td>250</td>
<td>62</td>
<td>59.49 (59.32) 4.41 (4.13) 10.60 (10.01)</td>
</tr>
<tr>
<td>4e</td>
<td>3-Cl-C₆H₄-</td>
<td>C₁₇H₁₅ClN₂O 298.76</td>
<td>265</td>
<td>69</td>
<td>68.34 (68.13) 5.06 (4.86) 10.38 (9.27)</td>
</tr>
<tr>
<td>4f</td>
<td>4-NO₂-C₆H₄-</td>
<td>C₁₇H₁₅N₂O 309.31</td>
<td>190</td>
<td>58</td>
<td>66.01 (65.86) 4.89 (4.65) 13.58 (13.42)</td>
</tr>
<tr>
<td>4g</td>
<td>3-NO₂-C₆H₄-</td>
<td>C₁₇H₁₅N₂O 309.31</td>
<td>160</td>
<td>66</td>
<td>66.01 (65.83) 4.89 (4.61) 13.58 (13.19)</td>
</tr>
<tr>
<td>4h</td>
<td>4-Cl-C₆H₄-</td>
<td>C₁₇H₁₅ClN₂O 298.76</td>
<td>251</td>
<td>64</td>
<td>68.34 (68.19) 5.06 (5.00) 9.38 (9.19)</td>
</tr>
<tr>
<td>4i</td>
<td>4-NH₂-C₆H₄-</td>
<td>C₁₇H₁₅N₂O 279.33</td>
<td>240</td>
<td>68</td>
<td>73.10 (73.04) 6.13 (6.08) 15.04 (15.00)</td>
</tr>
<tr>
<td>4j</td>
<td>2-OH-C₆H₄-</td>
<td>C₁₇H₁₅N₂O₂ 280.32</td>
<td>220</td>
<td>50</td>
<td>72.84 (72.79) 5.75 (5.59) 9.99 (9.84)</td>
</tr>
</tbody>
</table>
TABLE 4B: ANTIMICROBIAL ACTIVITY OF 2-(4-ISOPROPYLPHENYL)-5-ARYL-1,3,4-OXADIAZOLES

(in µg/ml)

<table>
<thead>
<tr>
<th>No.</th>
<th>Code No.</th>
<th>Antibacterial activity</th>
<th>Antifungal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gram +ve Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>1.</td>
<td>4a</td>
<td>+ + - + + + + + - - -</td>
<td>+ + - + + - + + +</td>
</tr>
<tr>
<td>2.</td>
<td>4b</td>
<td>+ + - + - + - - + + +</td>
<td>+ + - + + - + + +</td>
</tr>
<tr>
<td>3.</td>
<td>4c</td>
<td>- - - + + + - - - + + +</td>
<td>- - - + + - + + +</td>
</tr>
<tr>
<td>4.</td>
<td>4d</td>
<td>+ + - + + + - - - - -</td>
<td>+ + - + + - + + +</td>
</tr>
<tr>
<td>5.</td>
<td>4e</td>
<td>+ + - + + + + + - - -</td>
<td>- - - + + - + + +</td>
</tr>
<tr>
<td>6.</td>
<td>4f</td>
<td>+ + - + - - - - + + +</td>
<td>+ + - + + - + + +</td>
</tr>
<tr>
<td>7.</td>
<td>4g</td>
<td>+ + - + + + + + + - - -</td>
<td>+ + - + + - + + +</td>
</tr>
<tr>
<td>8.</td>
<td>4h</td>
<td>+ + - + + + + + + + + +</td>
<td>+ + - + + - + + +</td>
</tr>
<tr>
<td>9.</td>
<td>4i</td>
<td>+ + - + + + - + + + + + +</td>
<td>+ + - + + - + + +</td>
</tr>
<tr>
<td>10.</td>
<td>4j</td>
<td>+ + + + + + + + + + +</td>
<td>+ + + + + + + + +</td>
</tr>
</tbody>
</table>
REFERENCES

Studies on chemical…

Studies on chemical...

Part- A

(Part-IV)

Studies on Imidazolones Derivatives
INTRODUCTION

Imidazolinone, a five membered heterocycle having 2-nitrogen atoms at the 1 and 3-positions and C=O group at following positions: 2-oxo-imidazoline (1), 4-oxo-imidazoline (2), 5-oxo-imidazoline (3). Imidazolines are structurally related to guanidines and amidines.

The discovery of the 2-substituted-5-imidazolines dates back to the year 1888, when A. W. Hoffmann\(^1\) for the first time discovered 5-oxo-imidazoline by heating N\(^1\)-diacetyl ethylene diamine in a stream of dry hydrogen chloride and moreover the same compound was prepared by A. Ladenburg\(^2\) by the fusion of two equivalents of sodium acetate with one equivalent of ethylene diamine dihydrochloride.

Imidazolinone has been used extensively as a corrosion inhibitor on certain transition metals, such as copper. Preventing copper corrosion is important, especially in aqueous systems, where the conductivity of the copper decreases due to corrosion.

SYNTHETIC ASPECT

Various methods have been reported for the synthesis of imidazolinones in literature\(^3\). Aminolysis of oxazolone with amines led to the formation of imidazolinones which has been reported in literature\(^4\).

1. A. Saxena et al.\(^5\) have synthesized new imidazolinone derivatives (4).
2. X. Huang\(^6\) et al. have synthesized some new imidazolinone derivatives (5).

![Chemical Structure](image)

3. A. V. Patel et al.\(^7\) have synthesized new Imidazolinone derivatives by conventional method.

4. Zeng, Han et al.\(^8\) have synthesized 5-imidazolinone derivatives with 2-bromoacetic acid as a starting material.

MECHANISM

Azalactone reacts with variety of compounds such as water, alcohols, amines and hydrogen halides. Amides of α-acylamino acrylic acids obtained from the condensation of azalactone and primary amine can be converted to imidazolinone as shown under.

![Chemical Structure](image)

The ring closer can be effected under a variety of conditions. Substituted anilides have been converted to imidazolinone derivatives by the action of POCl\(_3\).

BIOLOGICAL EVALUATION

Naphazoline hydrochloride, xylometazoline hydrochloride etc. are various imidazolinone derivatives which have been used as adrenergic stimulants and tolazoline
and phentolamine as adrenergic blocking agents. Various imidazolinones are known to exhibit a broad spectrum of biological activities such as:

1. Antitubercular
2. Anti cancer
3. Insecticidal
4. Antiviral
5. Hypertensive
6. Antiinflammatory
7. Glucagon antagonists
8. Antimicrobial
9. Antihistaminic
10. Antidiabetic

Bascou and co-workers have prepared some new imidazolinones and reported their agrochemical activity. Kolhe Vishnu et al. have reported anti AIDS, antibacterial and fungicidal activity of 5-oxo-imidazolines. Herbicidal activity of imidazolinone derivatives have been reported by U. Akyoshi et al. Ding M. et al. and Pilkinson B. et al. have reported a new series of biologically active analogues of 5-oxo-imidazolines. Imidazolinone derivatives which possess antifungal activity have been reported. Some new 5-oxoimidazolines as antimicrobial agents have been investigated. L. Joseph Patel and co-workers have prepared substituted imidazolinones which inhibited the abnormal cell growth in human body. B. Kalluraya et al. (IV) have reported antibacterial, antifungal, anti-inflammatory and analgesic activity of 5-oxo-imidazolines.
Studies on chemical...

![Chemical Structure](image)

(6)

Work done from our laboratory

A. M. Vyas\(^2\) have synthesized some new imidazolones. Synthesis of some new imidazolones and 1,2,4-triazoles bearing benzo[\(b\)]thiophene nucleus as antimicrobial agents have been reported by K. M. Thakar\(^2\). 1-\(N\)-substituted benzalaminothiocarbonyl-2-methyl-4-(8'-hydroxyquinolin-7'-yl)methine-5-imidazolones have been reported by A. M. Vyas\(^3\).

Literature survey reveals that the compounds bearing imidazolones moiety possess potential drug activity. Looking to the diversified biological activities we have synthesized some pyrazole derivatives in order to achieving better therapeutic agents. These studies are described in following section.

SECTION - I : SYNTHESIS AND BIOLOGICAL SCREENING OF \(N\)-(4-(ARYLIDENE)-4,5-DIHYDRO-5-OXO-2-PHENYLMIDAZOL-1-YL)-4- ISOPROPYLBENZAMIDES
SECTION – I

SYNTHESIS AND BIOLOGICAL SCREENING OF N-(4-(ARYLIDENE)-4,5-DIHYDRO-5-OXO-2-PHENYLIMIDAZOL-1-YL)-4-ISOPROPYLBENZAMIDES.

Various imidazolinones have resulted in many potential drugs and are known to possess a broad biological spectrum. In view of getting better therapeutic agents and considering the association of various biological activities with 4-isopropylbenzohydrazide nucleus, the preparation of 5-imidazolones of type-(V) have been undertaken by the condensation of 4-isopropylbenzohydrazide with substituted azalactones which in turn have been prepared by well known Ertenmeyer azalactone synthesis.

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and 1H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their in vitro biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards Aspergillus niger, Candida albicans at a concentration of 2000/1000/500 µg/ml. The biological activity of the synthesized compounds have been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.5b.
Studies on chemical…

IR SPECTRAL STUDIES OF N-(4-BENZYLIDENE-4,5-DIHYDRO-5-OXO-2-PHENYLLIMIDAZOL-1-YL)-4-ISOPROPYLBENZAMIDE

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm⁻¹</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkane-CH₃</td>
<td>C-H str.</td>
<td>2941</td>
<td>2975-2940</td>
</tr>
<tr>
<td></td>
<td>C-H str. (sym.)</td>
<td>2858</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1448</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1375</td>
<td>1395-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>2941</td>
<td>2980-2930</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1523</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H I.p.(def)</td>
<td>1067</td>
<td>1125-1000</td>
</tr>
<tr>
<td></td>
<td>C-H o.o.p.</td>
<td>663</td>
<td>700-600</td>
</tr>
<tr>
<td>Isopropyl</td>
<td>-CH(CH₃)₂</td>
<td>2893</td>
<td>2800-2900</td>
</tr>
<tr>
<td>Imidazoline</td>
<td>C=N str.</td>
<td>1635</td>
<td>1650-1580</td>
</tr>
<tr>
<td></td>
<td>C=O str.</td>
<td>1753</td>
<td>1760-1700</td>
</tr>
<tr>
<td></td>
<td>C-N str.</td>
<td>1010</td>
<td>1050-1010</td>
</tr>
<tr>
<td>Amide</td>
<td>N-H bend.</td>
<td>1635</td>
<td>1630-1550</td>
</tr>
</tbody>
</table>
NMR SPECTRAL STUDIES OF N-(4-BENZYLIDENE-4,5-DIHYDRO-5-OXO-2-PHENYLIMIDAZOL-1-YL)-4-ISOPROPYLBENZAMIDE

Instrumental Standard: TMS; Solvent: CDCl₃; Instrument: BRUKER Spectrometer (400MHz)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.42-1.46</td>
<td>6H</td>
<td>doublet</td>
<td>-CH₃</td>
<td>6.88</td>
</tr>
<tr>
<td>2</td>
<td>2.78-2.84</td>
<td>1H</td>
<td>multiplet</td>
<td>-CH</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>7.07-7.09</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Ha,a'</td>
<td>7.72</td>
</tr>
<tr>
<td>4</td>
<td>7.28</td>
<td>1H</td>
<td>singlet</td>
<td>-CH</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>7.36-7.44</td>
<td>6H</td>
<td>multiplet</td>
<td>-Ar-H</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>7.60-7.62</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hb,b'</td>
<td>7.60</td>
</tr>
<tr>
<td>7</td>
<td>7.96-7.98</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hc,c'</td>
<td>7.16</td>
</tr>
<tr>
<td>8</td>
<td>8.19-8.21</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hd,d'</td>
<td>7.68</td>
</tr>
<tr>
<td>9</td>
<td>9.74</td>
<td>1H</td>
<td>singlet</td>
<td>-NH</td>
<td>---</td>
</tr>
</tbody>
</table>
Studies on chemical...

Expanded aromatic region of NMR spectra

MASS SPECTRAL STUDIES OF \(N-(4\text{-BENZYLIDENE}-4,5\text{-DIHYDRO}-5\text{-OXO}-2\text{-PHENYLIMIDAZOL}-1\text{-YL})-4\text{-ISOPROPYL}BENZAMIDE \)
Studies on chemical...

PROPOSED MASS FRAGMENTATION OF \(N\)-(4-BENZYLIDENE-4,5-DIHYDRO-5-OXO-2-PHENylimidazol-1-yl)-4-ISOPROPYLBENZAMIDE

\[
\begin{align*}
\text{m/z} &= 263(M^+) \\
\text{C}_{16}H_{13}N_3O_3
\end{align*}
\]

\[
\begin{align*}
\text{m/z} &= 248(M) \\
\text{C}_{16}H_{12}N_2O
\end{align*}
\]

\[
\begin{align*}
\text{m/z} &= 245(M^-) \\
\text{C}_{13}H_{15}N_3O_2
\end{align*}
\]

\[
\begin{align*}
\text{m/z} &= 203(M^-) \\
\text{C}_{10}H_{8}N_2O_2
\end{align*}
\]

\[
\begin{align*}
\text{m/z} &= 409 \\
\text{C}_{26}H_{23}N_3O_2
\end{align*}
\]

\[
\begin{align*}
\text{m/z} &= 92(M^-) \\
\text{C}_7H_8
\end{align*}
\]

\[
\begin{align*}
\text{m/z} &= 105(M^+) \\
\text{C}_7H_7N
\end{align*}
\]

\[
\begin{align*}
\text{m/z} &= 120(M^+) \\
\text{C}_7H_8N_2
\end{align*}
\]

\[
\begin{align*}
\text{m/z} &= 146(M^-) \\
\text{C}_9H_{10}N_2
\end{align*}
\]

\[
\begin{align*}
\text{m/z} &= 160(M^+) \\
\text{C}_9H_8N_2O
\end{align*}
\]
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] **Synthesis of 4-Isopropylbenzohydrazide.**

A mixture of methyl 4-isopropylbenzoate (1.78g, 0.01mol) and hydrazine hydrate (2.0 ml, 0.02mol) in ethanol was refluxed in water bath for 2 hrs. The reaction mixture was poured onto crushed ice. Crude product was isolated and crystallized from ethanol.

[B] **Synthesis of 4-Arylidene-2-phenyl-5-oxazolinones.**

These were prepared by the condensation of substituted benzaldehyde with benzoyl glycine in presence of sodium acetate and acetic anhydride as described by Vogel.\(^{34}\)

[C] **Synthesis of N-(4-Benzylidene-4,5-dihydro-5oxo-2-phenylimidazol-1-yl)-4-isopropylbenzamide isopropyl benzamide.**

To a mixture of (4Z)-4-benzylidene-2-phenyloxazol-5(4H)-one(2.49g 0.01mol) and 4-isopropylbenzohydrazide (1.78g, 0.01mol) in 20ml of pyridine were refluxed for 6-8 hrs. The excess of solvent was removed under reduced pressure and reaction mixture was poured in crushed ice. The product was isolated and crystallized from benzene. Yield 64%, m.p 130 °C Anal. cald. for C\(_{26}\)H\(_{23}\)N\(_{3}\)O\(_2\); C, 76.26; H,5.66; N,10.26 %; Found: C,76.23; H,5.88; N,10.65 %

Similarly other substituted imidazolones have been prepared. The physical constants are recorded in Table No.5a.

Imidazolones
Antimicrobial activity of \(N-(4\text{-}(\text{Arylidene})-4,5\text{dihydro}-5\text{-}\text{oxo}-2\text{-}\text{phenylimida-}
\text{zol-1-yl})-4\text{-}\text{isopropylbenzamides.}

Antimicrobial testing was carried out as described in Part-I, Section (D).

The zones inhibitions of the compounds are recorded in Table No.5b.
Table-5a: Physical constants of N-(4-Arylidene-4,5-dihydro-5oxo-2-phenyl imidazol-1-yl)-4-isopropylbenzamides

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution</th>
<th>Molecular Formula/ Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition Calcd./Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>5a</td>
<td>C₂H₅⁻</td>
<td>C₂₀H₂₃N₂O₂ 409.47</td>
<td>240</td>
<td>65</td>
<td>76.26 (76.13)</td>
</tr>
<tr>
<td>5b</td>
<td>3-NO₂-C₆H₄⁻</td>
<td>C₂₀H₂₂N₂O₄ 454.47</td>
<td>205</td>
<td>58</td>
<td>68.71 (68.45)</td>
</tr>
<tr>
<td>5c</td>
<td>4-NO₂-C₆H₄⁻</td>
<td>C₂₀H₂₂N₂O₄ 454.47</td>
<td>190</td>
<td>42</td>
<td>68.71 (68.36)</td>
</tr>
<tr>
<td>5d</td>
<td>4-OH-C₆H₄⁻</td>
<td>C₂₀H₂₃N₂O₃ 425.47</td>
<td>240</td>
<td>55</td>
<td>73.39 (73.05)</td>
</tr>
<tr>
<td>5e</td>
<td>2-NO₂-C₆H₄⁻</td>
<td>C₂₀H₂₂N₂O₄ 454.47</td>
<td>195</td>
<td>49</td>
<td>68.71 (68.36)</td>
</tr>
<tr>
<td>5f</td>
<td>2-OCH₃-C₄H₅⁻</td>
<td>C₂₇H₂₉N₂O₃ 439.50</td>
<td>220</td>
<td>53</td>
<td>73.78 (73.33)</td>
</tr>
<tr>
<td>5g</td>
<td>4-F-C₆H₄⁻</td>
<td>C₂₀H₂₂FN₂O₂ 427.47</td>
<td>228</td>
<td>65</td>
<td>73.05 (72.00)</td>
</tr>
<tr>
<td>5h</td>
<td>4-Cl-C₆H₄⁻</td>
<td>C₂₀H₂₂ClN₂O₂ 443.92</td>
<td>198</td>
<td>45</td>
<td>70.34 (70.13)</td>
</tr>
<tr>
<td>5i</td>
<td>4-OCH₃-C₆H₄⁻</td>
<td>C₂₇H₂₉N₂O₃ 439.50</td>
<td>208</td>
<td>66</td>
<td>73.78 (73.35)</td>
</tr>
</tbody>
</table>

Imidazolones
TABLE 5B: ANTIMICROBIAL ACTIVITY OF N-4-(ARYLIDENE)-4,5DIHYDRO-5-OXO-2-PHENYL-IMIDAZOL-1-YL)-4-ISOPROPYLBENZAMIDES. (in µg/ml)

<table>
<thead>
<tr>
<th>No.</th>
<th>Code No.</th>
<th>Antibacterial activity</th>
<th>Antifungal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gram +ve Bacteria</td>
<td>Gram -ve Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>1.</td>
<td>5a</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2.</td>
<td>5b</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3.</td>
<td>5c</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4.</td>
<td>5d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5.</td>
<td>5e</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6.</td>
<td>5f</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>5g</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>5h</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Where (+) = New synthesized compounds were active against microorganism

(-) = New synthesized compounds were inactive against microorganism
REFERENCE

27. S. A. Agripat; Neth. Appl. 6, 611,087 (1967); Chem. Abstr., 68, 29699z (1968).

Studies on Thiophene-2-Carbaldehyde Derivatives
INTRODUCTION

Thiophene-2-carbaldehyde (1) is an aromatic heterocyclic compound consisting of four carbon atoms and one sulfur atom in a five-membered ring. Thiophene was discovered by Viktor Meyer in 1883 as a contaminant in benzene. Related to thiophene are benzothiophene and dibenzothiophene, containing the thiophene ring fused with one and two benzene rings.

It was observed that isatin forms a blue dye if, it is mixed with sulfuric acid and crude benzene. Victor Meyer was able to isolate the substance responsible for this reaction from benzene. This new heterocyclic compound was thiophene.

\[
\begin{align*}
\text{Thiophene} & \\
& \text{(1)}
\end{align*}
\]

Thiophenes are important class of heterocyclic compounds and are recurring building blocks in organic chemistry with applications in pharmaceuticals. The benzene ring of a biologically active compound may often be replaced by a thiophene without loss of activity. Thiophene and its derivatives occur in petroleum, sometimes in concentrations up to 1-3%. The thiophenic content of liquids from oil and coal is removed via the hydrodesulfurization (HDS) process.

SYNTHETIC ASPECT

Various methods for the preparation of thiophene derivatives have been cited in literature, some of the methods are as under.

1. A. Y. Kopylov and co-workers synthesized thiophene via butane, (methylidisulfanyl)ethane and (ethyldisulfanyl)ethane, using alluminium oxide as a catalyst.
Studies on chemical...

H\textsubscript{3}C-\textsubscript{CH\textsubscript{3}} + H\textsubscript{3}C-S-S-CH\textsubscript{3} + Et-S-S-Et \xrightarrow{\text{Al}_2\text{O}_3, 450 \degree\text{C, 75 min}} \text{cyclopentadiene}

2. Liang, Xinmiao and workers5 synthesized thiophene using ferrous nitrate and cyano methane.

\chem{\text{Fe(NO}_3\text{)}_3, \text{CH}_3\text{CN} \xrightarrow{\text{12 hrs, RT}} \text{thiophene}}

3. Moon, Jeongju and workers6 synthesized thiophenes and 2,2'-bithiophene using Sodium butoxide and cyclohexenone, palladium as catalyst.

\chem{\text{Br, NaoBu, Cyclohexanol, Ph\textsubscript{2}, Pentadienone Pd} \xrightarrow{\text{12 hrs, RT}} \text{thiophene}}

4. N. T. Berberova et al.7 synthesized thiophenes and thiophene-2-thiol via dichloromethane and hydrogen sulphide at 20-25 \degree\text{C}.

\chem{\text{H}_2\text{S, CH}_2\text{Cl}_2 \xrightarrow{\text{H}_3\text{PO}_4} \text{thiophene}}

5. A. R. Katritzky et al.8 synthesized thiophenes from 2,5-dimethylthiophene using hydrophosphoric acid.

\chem{\text{H}_3\text{C-S-S-CH}_3 \xrightarrow{\text{H}_3\text{PO}_4} \text{thiophene}}

6. E. N. Deryagina and worker9 synthesized thiophenes from 2-chlorothiophene and ethyne.

\chem{\text{Cl} \xrightarrow{\text{HC=CH}} \text{thiophene}}

Introduction
BIOLOGICAL EVALUATION

Over recent years there has been an increasing interest in the chemistry of thiophene because of their biological significance.

1. Analgesic10-12
2. Antimicrobial13-15
3. Anticonvulsant16,17
4. Antifungal18,19
5. Antihistaminic20,21
6. Antiinflammatory22-25
7. Antitumor26-28
8. Antiviral29-31
9. β-Adrenergic32
10. Diuretic33
11. Insecticidal34-36
12. Antipsychotic37,38
13. Anticancer39-42

S. F. Mohmad43 have prepared \{4-(thiophen-2-yl)-3,4,5,6-tetrahydrobenzo [\textit{H}]quinazolin-2-yl\}sulfanyl\} acid (2) as a viral and anti cancer agent.

\[
\begin{align*}
\text{NH} & \quad \text{N} & \quad \text{S} & \quad \text{O} & \quad \text{O} & \quad \text{H} \\
(2)
\end{align*}
\]
Gautam Panda44 have prepared 2-{phenyl[4-(2-phenylethoxy)phenyl] methyl} thiophene (3) and tested for its antitubercular activity.

\[
\begin{align*}
\text{phe} & \quad \text{phe} & \quad \text{phe} \\
\text{O} & \quad \text{R} \\
\text{(3)}
\end{align*}
\]

M. S. Malamas and coworkers45 have synthesized novel thiophene derivatives inhibitors of protein tyrosine phosphatase 1B with antihyperglycemic properties. S. S. Perez et al.46 developed 5-substituted thiophene derivatives with dual action at 5-HT\textsubscript{1A} serotonin receptors and serotonin transporter as a new class of antidepressants. Synthesis and serotonergic activity of thiophene-4-piperazine derivatives as novel antagonists for the vascular 5-HT\textsubscript{1B} receptor has been achieved by G. P. Moloney and group47.

Derivatives of benzo[b]thiophene are also available as drug, some of them are shown as under:

\[
\begin{align*}
\text{Zileuton (ZYFLOTM) } & \quad \text{Sertaconazole } & \quad \text{Raloxifene} \\
\text{Antiasthhamatic } & \quad \text{Antifungal } & \quad \text{Anticancer/Osteroporosis}
\end{align*}
\]
Work done from our laboratory

V. V. Kachhadia\(^{48,49}\) have synthesized cyclohexenones, thiohydantoins and thiazolidinones derivatives bearing benzo[\(b\)]thiophene nucleus and reported their antitubercular and antimicrobial activity.

S. L. Vasoya\(^{50,51,52}\) reported facile synthesis of some new azetidinones, acetyl oxadiazoles, thiosemicarbazides, 1,3,4-thiadiazoles, thiosemicarbazide as a potent antitubercular and antimicrobial agents bearing benzo[\(b\)]thiophene nucleus.

In view of procuring highly potent biodynamic agents after this literature survey and on continuation of our on going work on thiophenes derivatives for their various methods of synthesis and different biological activities, synthesis of thiophene have been undertaken in order to achieving superior therapeutic agents. This can be summarized in the following sections as under.

PART-I:

SECTION:I SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF CYCLOHEXENONES.

SECTION:II SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF INDAZOLES.

PART-II: SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF MANNICH BASES.
REFERENCES

Part- B

(Part-I)

Studies on Indazole Derivatives
INTRODUCTION

Cyclohexenones are derivatives of cyclohexane with carbonyl group at position-1 and double bond at position-2. There are different types of cyclohexenone derivatives but the greatest difference in structure and properties is exerted by the groups attached to carbon atom.

Cyclohexenones is the parent of a series of compounds that is important in agricultural and medicinal chemistry. Cyclohexenones can be conveniently synthesized by the treatment of α, β-unsaturated carbonyl compounds with ethyl acetoacetate in basic media.

SYNTHETIC ASPECT

Various method for the synthesis of cyclohexenone derivatives have been described in literature1-9.

1. A review of the earlier literature by Gerald et al.10 described representative synthetic procedure of cyclohexenone derivatives.

2. Byong-Don Chong et al.11 have been prepared cyclohexenone derivatives by tandem michael addition-aldol condensation of β-keto esters to conjugate enones (or enals) in t-BuOH.
3. Andrea Buzas et al.12 have been prepared cyclohexenone by reaction of various substituted 5-en-2-yn-1-yl acetates with using biphenyl phosphine as catalyst in methanol in basic media.

4. Ken Tanaka et al.13 have synthesized cyclohexenone from 4-alkynals and alkynes in presence of Rh catalyst via novel [4+2] annulations.

5. Surya Prakash Rao and co workers14 reported solvent-free microwave mediated Michael addition reactions to form cyclohexenones with 98\% yield.

6. H. A. Eman et al.15 have synthesized cyclohexenone derivatives from chalcone.
7. Page Philip C. and co-workers16 have prepared ethyl substitute cyclohexenone derivatives.

8. S. S. Lokanatha Rai et al.17 have reported synthesis of 6-methoxy-7-methyl-3-aryl-cyclohexyl-4-oxo-2-napthoate derivatives.

MECHANISM

The addition reaction between ethyl acetoacetate and α,β-unsaturated ketone give cyclohexenone via michael addition. This reaction has been carried out in basic media by using sodium ethoxide or anhydrous K$_2$CO$_3$ in acetone. During the reaction, nucleophillic addition of carbanion take place to the C=C of the acceptor. The α,β-unsaturated compounds is known as acceptor and ethyl acetoacetate is known as donor.
Studies on chemical…

BIOLOGICAL EVALUATION

Cyclohexenone and its derivatives are widely used in pharmaceutical industries some of them are as under.

1. Analgesic18
2. Antibiotic19
3. Anticancer20
4. Anticonvulsant21
5. Antitumor22
6. Cardiovascular23
7. Neurotropic activity24
8. Antiplatelet25
9. Antifungal26

Zhang Guo-Liang et al.27 have reported some new cyclohexenones as anti-HIV-1 agents. Felix et al.28, Nippon29 and Engel Stephan et al.30 (3) and (4) have been synthesized cyclohexenone derivatives as herbicidal agent.

R. Joachim et al.31 and Yoshida Shigeo et al.32 have reported cyclohexenone derivatives having plant growth regulators which proved more effective than chlormequat chloride.

Moreover K. Reiner et al.33 have reported cyclohexenone (5) derivatives having herbicidal agent. Gonzalez de Aguilar et al.34 have reported some new cyclohexenones as
Neurotropic agents which have useful in cultured central nervous system neurons.

Cyclohexenones possess inhibitory activity against the growth of lettuce seedling found by Kimara et al.35 H. S. Joshi et al.36 have synthesized and reported their antitubercular and antimicrobial activity.

Thus, with an effort to capitalize the biological potential of the heterocyclic system and to provide more interesting compounds for biological screening, we have undertaken the synthesis of several cyclohexenone derivatives which has been described as under.

SECTION - I : SYNTHESIS AND BIOLOGICAL SCREENING OF ETHYL 6-OXO-4-ARYL-2-(THIOPHEN-2-YL)CYCLOHEX-1-ENECARBOXYLATES
SECTION - I

SYNTHESIS AND BIOLOGICAL SCREENING OF ETHYL 6-OXO-4-ARYL-2-(THIOPHEN-2-YL)CYCLOHEX-1-ENECARBOXYLATES.

Cyclohexenone possess a various pharmaceutical activities such as anticonvulsant, antidiabetic etc. Looking to the interesting properties of cyclohexenones, it was considered worthwhile to synthesize a series of cyclohexenones of type (VII) by the cyclocondensation of chalcones with ethyl cyano acetate in sodium ethoxide.

\[
\begin{align*}
\text{Type (VII)} \quad R &= \text{Aryl} \\
\end{align*}
\]

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and \(^1\)H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their \textit{in vitro} biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards \textit{Aspergillus niger}, \textit{Candida albicans} at a concentration of 2000/1000/500 \(\mu g/ml \). The biological activity of the synthesized compounds have been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.7b.
Studies on chemical...

IR SPECTRAL STUDIES OF ETHYL 4-(4-CHLOROPHENYL)-6-OXO-2-(THIOPHEN-2-YL)CYCLOHEX-1-ENECARBOXYLATE.

![IR Spectra](image)

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range: 4000-400 cm⁻¹ (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm⁻¹</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Reported</td>
</tr>
<tr>
<td>Alkane</td>
<td>C-H str.</td>
<td>2970</td>
<td>2975-2940</td>
</tr>
<tr>
<td></td>
<td>C-H str. (sym.)</td>
<td>2870</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1410</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1373</td>
<td>1395-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>2970</td>
<td>2980-2940</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1537</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H I.p.(def)</td>
<td>1006</td>
<td>1125-1000</td>
</tr>
<tr>
<td></td>
<td>C-H o.o.p.</td>
<td>704</td>
<td>700-600</td>
</tr>
<tr>
<td>Thiophene</td>
<td>>C=S str.</td>
<td>1579</td>
<td>1590-1550</td>
</tr>
<tr>
<td>Cyclohexenone</td>
<td>>C=O str.</td>
<td>1697</td>
<td>1700-1675</td>
</tr>
<tr>
<td>Ester</td>
<td>>C=O str.</td>
<td>1753</td>
<td>1735-1750</td>
</tr>
<tr>
<td>Ether</td>
<td>C-O-C str.</td>
<td>1006</td>
<td>1075-1020</td>
</tr>
<tr>
<td>Halide</td>
<td>-C-Cl str.</td>
<td>704</td>
<td>800-600</td>
</tr>
</tbody>
</table>
NMR SPECTRAL STUDIES OF ETHYL 4-(4-CHLOROPHENYL)-6-OXO-2-(THIOPHEN-2-YL)CYCLOHEX-1-ENECARBOXYLATE.

Instrumental Standard: TMS; Solvent: CDCl$_3$; Instrument: BRUKER Spectrometer (500MHz)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.29-1.31</td>
<td>3H</td>
<td>triplet</td>
<td>-CH$_3$</td>
<td>4.5</td>
</tr>
<tr>
<td>2.</td>
<td>2.10-2.37</td>
<td>2H</td>
<td>doublet</td>
<td>-CH$_2$</td>
<td>4.5</td>
</tr>
<tr>
<td>3.</td>
<td>3.00-3.02</td>
<td>1H</td>
<td>multiplet</td>
<td>-CH</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>3.13-3.23</td>
<td>2H</td>
<td>doublet</td>
<td>-CH$_2$</td>
<td>2.0</td>
</tr>
<tr>
<td>5.</td>
<td>4.10-4.27</td>
<td>2H</td>
<td>doublet</td>
<td>-CH$_2$</td>
<td>4.5</td>
</tr>
<tr>
<td>6.</td>
<td>7.09-7.11</td>
<td>2H</td>
<td>triplet</td>
<td>Ar-H$_{a,a'}$</td>
<td>5.0</td>
</tr>
<tr>
<td>7.</td>
<td>7.27-7.30</td>
<td>1H</td>
<td>multiplet</td>
<td>Ar-H</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>7.44-7.48</td>
<td>2H</td>
<td>multiplet</td>
<td>Ar-H$_{b,b'}$</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>7.94-7.97</td>
<td>2H</td>
<td>multiplet</td>
<td>Ar-H</td>
<td>-</td>
</tr>
</tbody>
</table>
Studies on chemical...

Expanded aromatic region of NMR spectra

MASS SPECTRAL STUDIES OF ETHYL 4-(4-CHLOROPHENYL)-6-OXO-2-(THIOPHEN-2-YL)CYCLOHEX-1-ENECARBOXYLATE.

Department of Chemistry
(Sponsored by DST-FIST, UGC-NSAP)
Saurashtra University
Rajkot 360005

Sample Information

Sample Name: Cl(4-Cl-Ph)-5-Cl(2-Thienyl)-2-(3-OH-2-He)COOEt
Sample Code: cl4cl
Sample Date: 03/09/01

Mass Spectra

m/z = 360

Indazole
PROPOSED MASS FRAGMENTATION OF ETHYL 6-OXO-4-ARYL-2-(THIOPHEN-2-YL)CYCLOHEX-1-ENECARBOXYLATE.
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] Preparation of (E)-1-Phenyl-3-(thiophen-2-yl)prop-2-en-1-ones

These were prepared by condensation of thiophen-2-carbaldehyde and substituted acetophenone in the presence of sodium hydroxide as described by N. M. Rateb and Dalla Via, M. M. Hania.

[B] Preparation of Ethyl 4-(4-chlorophenyl)-6-oxo-2-(thiophen-2-yl)cyclohex-1-enecarboxylate

A mixture of (E)-1-(4-chlorophenyl)-3-(thiophen-2-yl)prop-2-en-1-one (2.48gm, 0.01mol) and ethyl acetoacetate (1.3 ml, 0.01mol) in solid sodium ethoxide (25 gm) was refluxed for 8 hrs. The crude product was isolated by pouring the mixture into ice-cold water followed by neutralization with conc. HCl and crystallized from ethanol. Yield 68%, M. P. 140 °C, Anal. Calcd. for C_{19}H_{17}ClO_{3}S requires: C, 63.24; H, 4.75; O, 13.30%, Found: C, 63.28; H, 4.71; O, 13.33%.

Similarly other Ethyl 6-oxo-4-aryl-2-(thiophen-2-yl)cyclohex-1-enecarboxylate were prepared. The physical data are recorded in Table No. 7a.

[C] Antimicrobial activity of Ethyl 6-oxo-4-aryl-2-(thiophen-2-yl)cyclohex-1-enecarboxylates

Antimicrobial testing were carried out as described in part - I, Section - I (D). The zones of inhibition of test solutions are recorded in Table No. 7b.
Studies on chemical…

Table-7a: Physical constants of Ethyl 6-oxo-4-aryl-2-(thiophen-2-yl)cyclohex-1-ene carboxylates

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution</th>
<th>Molecular Formula/Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition Calcd./Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>7a</td>
<td>C₆H₅</td>
<td>C₁₉H₁₉O₃S₃26.40</td>
<td>110</td>
<td>66</td>
<td>69.91 (69.84)</td>
</tr>
<tr>
<td>7b</td>
<td>2-Cl-C₆H₅</td>
<td>C₁₉H₁₇ClO₃S₃60.85</td>
<td>95</td>
<td>58</td>
<td>63.24 (63.06)</td>
</tr>
<tr>
<td>7c</td>
<td>4-Cl-C₆H₅</td>
<td>C₁₉H₁₇ClO₃S₃60.85</td>
<td>120</td>
<td>54</td>
<td>63.24 (63.07)</td>
</tr>
<tr>
<td>7d</td>
<td>3-Cl-C₆H₅</td>
<td>C₁₉H₁₇ClO₃S₃60.85</td>
<td>115</td>
<td>63</td>
<td>63.24 (63.04)</td>
</tr>
<tr>
<td>7e</td>
<td>4-NO₂-C₆H₄</td>
<td>C₁₉H₁₇NO₃S₃71.40</td>
<td>114</td>
<td>55</td>
<td>61.44 (61.23)</td>
</tr>
<tr>
<td>7g</td>
<td>4-NH₂-C₆H₄</td>
<td>C₁₉H₁₇NO₃S₃41.42</td>
<td>119</td>
<td>52</td>
<td>66.84 (66.57)</td>
</tr>
<tr>
<td>7h</td>
<td>2-OH-C₆H₄</td>
<td>C₁₉H₁₈O₃S₃42.40</td>
<td>124</td>
<td>45</td>
<td>66.65 (66.38)</td>
</tr>
<tr>
<td>7i</td>
<td>4-OH-C₆H₄</td>
<td>C₁₉H₁₈O₃S₃42.40</td>
<td>109</td>
<td>49</td>
<td>66.65 (66.48)</td>
</tr>
</tbody>
</table>
TABLE 7B: ANTIMICROBIAL ACTIVITY OF ETHYL 6-OXO-4-ARYL-2-(THIOPHEN-2-YL)CYCLOHEX-1-ENECARBOXYLATES (in µg/ml)

<table>
<thead>
<tr>
<th>No.</th>
<th>Code No.</th>
<th>Antibacterial activity</th>
<th>Antifungal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gram +ve Bacteria</td>
<td>Gram -ve Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 1000 500</td>
<td>2000 1000 500</td>
</tr>
<tr>
<td>1.</td>
<td>7a</td>
<td>+ + + + - - + + + + + + + + - + + + + + +</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>7b</td>
<td>+ + + + + + + + + + + + + + + + + -</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>7c</td>
<td>+ + + + + + + - - + + + + + + - + + -</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>7d</td>
<td>+ + + + + + + + + + + + + + + + - + + + -</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>7e</td>
<td>+ + - + + + + + + + - - - - - + + - + + -</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>7g</td>
<td>+ + + + + + + + + + + + + + + + + + + - + + + -</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>7h</td>
<td>+ + + - - + + + + + + + + + + - + + + +</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>7i</td>
<td>- - - - - - - - - - - - - - - - - - - -</td>
<td></td>
</tr>
</tbody>
</table>

Where (+) = New synthesized compounds were active against microorganism
(-) = New synthesized compounds were inactive against microorganism
SECTION-II

INTRODUCTION

Indazole was first described in 1869, by Buchner that the benzo derivatives of pyrazole is called benzopyrazole or indazole (6). Indazoles can be considered as either azaindazoles or azaisoindazoles. The compounds of medicinal interest in this group so far have been non-steroidal anti-inflammatory agents or analgesic.

![Indazole structure](image)

SYNTHETIC ASPECT

Literature\(^ {37-39} \) survey different methods are available for the preparation of indazoles. Some of them are as under.

1. Indazoles can be synthesized from chalcone derivatives via cyclohexenone derivatives\(^ {40,41} \).

![Synthesis reaction](image)

2. Indazoles\(^ {42} \) can prepared by the cyclization of 2,3-dialkoxy or hydroxyl acetophenones hydrazones in presence of PPA.

3. Cyclocondensation of activated acetylene with hydrazine afforded indazole derivatives\(^ {43} \).

![Synthesis reaction](image)
4. Reaction of substituted azo sulfides with potassium-t-butoxide in DMSO led to the corresponding 1-H indazole derivatives.\(^4\)

5. Okhim L-Yu et al.\(^5\) synthesized some indazole derivatives by heating benzylicic aniline derivatives in DMF.

6. Indazole ring system\(^6\) can also be designed by the diazotization of substituted anilines eg. o-toluidine.

7. Caron Stephane and co-workers\(^7\) have described that the condensation of 2-acyl aryl mesylates with hydrazines affords corresponding indazole derivatives.

\[
\begin{array}{c}
\text{R-} \quad \begin{array}{c}
\text{N} \\
\text{N-SCH}_3
\end{array} \\
\text{DMSO} \\
\text{t-BuOK}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{R-} \\
\begin{array}{c}
\text{N} \\
\text{H}
\end{array}
\end{array}
\]

BIOLOGICAL EVALUATION

Indazole derivatives are biologically interesting class of compounds. They are associated with various pharmacological properties such as:

1. Antiallergic\(^8\)
2. Antihypertensive\(^9\)
3. Antiinflammatory\(^10\)
4. Antineoplastic\(^11\)
5. Antipyretic\(^12\)
6. Antipsychotics\(^13\)
7. Antitumor\(^14\)
8. Antiviral\(^15\)
9. Cytotoxic\(^16\)
10. Enzyme inhibitors\(^17\)
11. Fungicidal\(^18\)
Indazoles are non-steroidal anti-inflammatory agents or analgesic. The prototype is Benzydamine\(^{62}\) (10), a fairly potent nonsteroidal anti-inflammatory agent with significant antipyretic and analgesic properties. The other example are Bendazue\(^{63}\) (11) and Tetrydamine\(^{64}\) (12).

Ooe Taka nori et al.\(^{65}\) reported some indazoles as hematinics, immuno stimulants and antitumor agents. Some indazole derivatives\(^{66}\) showed activity for enhancing macrophage phagocytosis, improving immunity and antitumor activity. Yamaguchi Masahisa et al.\(^{67}\) prepared some indazole derivatives as novel antiasthamatic agents with dual activities of thromboxane-\(\alpha_2\) synthetic inhibitor and bronchodialations.

Lavielle Gilbert et al.\(^{68}\) documented the [(pyrrolidinyl) methyl]-indazoles (13) as 5-HT\(_3\) like antagonist and remedy for the treatments of migrains and Schizophrenia\(^{69}\). Meshaw Richard Eric et al.\(^{70}\) have synthesized 4-amino ethoxy indazoles useful as dopamine D\(_2\) agonists. Allan David and co-workers\(^{71}\) have synthesized some indazole derivatives (14) and postulated them as fibrinogen antagonist.
Effland Richard Charles et al.72 synthesised 3-(pyridyl amino)-indazoles (15) and reported their use as antidepressants and anxiolytics. Some sulfonl indazoles (16) synthesized by Duzinska-usareulicz et al.73 have been found to possess anti-inflammatory activity.

Several co-workers have patented indazole derivatives useful as hypolipidemic or hypchoolesterolmic74 and cardiovascular75 agents.

Among variety of pharmacological properties have been encountered with indazole systems. Keeping the above in mind some novel indazole derivatives have been synthesized which have been described as under.

Work done from our laboratory

H. S. Joshi et al76 have synthesized some indazoles (17) and reported their antitubercular and antimicrobial activity.
K. H. Popat have synthesized 6-carbethoxy-5-(3'-chlorophenyl)-3-aryl-2-cyclohexenones as a anticancer, antitubercular and antimicrobial agent. 6-Aryl-4-(3'-chlorophenyl)-3-oxo-2,3a,4,5-tetrahydro-1H-indazoles have been reported by V. V. Kachhadiya. D. H. Vyas have synthesized some cyclohexenones and indazoles derivatives as an antimicrobial and antitubercular agent.

Thus with an effort to capitalize the biological potential of the heterocyclic system and to provide more interesting compounds for biological screening, we have under taken the synthesis of several indazoles which has been described as under.

SECTION - II: SYNTHESIS AND BIOLOGICAL SCREENING OF 4-ARYL-4,5DIHYDRO-6-(THIOPHEN-2-YL)-2H-INDAZOLE3(3aH)-ONES.
SECTION - II

SYNTHESIS AND BIOLOGICAL SCREENING OF 4-ARYL-4,5DIHYDRO-6-(THIOPHEN-2-YL)-2H-INDAZOLE-3(3aH)-ONES.

The synthesis of indazole has attracted the attention of chemists because of their potential pharmacodynamic properties. Looking to the interesting properties of indazoles, it appeared to synthesize a series of 4-aryl-4,5dihydro-6-(thiophen-2-yl)-2H-indazole-3(3aH)-one of type (VIII) for obtaining biologically potent molecules by reacting ethyl 6-oxo-4-aryl-2-(thiophen-2-yl)cyclohex-1-ene-carboxylate of type (VII) with hydrazine hydrate in presence of glacial acetic acid.

\[
\begin{align*}
\text{Type (VII)} & \quad \text{Type (VIII) } R=\text{Aryl}
\end{align*}
\]

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and \(^1\)H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their \textit{in vitro} biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards \textit{Aspergillus niger, Candida albicans} at a concentration of 2000/1000/500 \(\mu\)g/ml. The biological activity of the synthesized compounds have been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.8b.
Studies on chemical...

IR SPECTRAL STUDIES OF 4-ARYL-4,5DIHYDRO-6-(THIOPHEN-2-YL)-2H-INDAZOLE-3(3aH)-ONE.

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm⁻¹</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkane</td>
<td>C-H str.</td>
<td>2964</td>
<td>2975-2940</td>
</tr>
<tr>
<td></td>
<td>C-H str. (sym.)</td>
<td>2870</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1471</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1369</td>
<td>1395-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>2964</td>
<td>2980-2930</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1535</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H I.p.(def)</td>
<td>1058</td>
<td>1125-1000</td>
</tr>
<tr>
<td></td>
<td>C-H o.o.p.</td>
<td>648</td>
<td>700-600</td>
</tr>
<tr>
<td>Thiophene</td>
<td>>C=S str.</td>
<td>1585</td>
<td>1590-1550</td>
</tr>
<tr>
<td>Indazole</td>
<td>>C=N str.</td>
<td>1735</td>
<td>1735-1717</td>
</tr>
<tr>
<td>Amide</td>
<td>>C=O str.</td>
<td>1735</td>
<td>1735-1717</td>
</tr>
<tr>
<td>Amine</td>
<td>-NH- str.</td>
<td>3122</td>
<td>3350-3000</td>
</tr>
<tr>
<td>Halide</td>
<td>C-Cl str.</td>
<td>648</td>
<td>800-600</td>
</tr>
</tbody>
</table>

Indazole
NMR SPECTRAL STUDIES OF 4-ARYL-4,5DIHYDRO-6-(THIOPHEN-2-YL)-2H-INDAZOLE-3(3aH)-ONE.

Instrumental Standard: TMS; Solvent: CDCl$_3$; Instrument: BRUKER Spectrometer (500MHz)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.10-2.37</td>
<td>2H</td>
<td>doublet</td>
<td>-CH$_2$</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>2.78</td>
<td>1H</td>
<td>singlet</td>
<td>-CH</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2.81</td>
<td>1H</td>
<td>multiplet</td>
<td>-CH</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>5.48</td>
<td>1H</td>
<td>singlet</td>
<td>-CH</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>6.92-6.95</td>
<td>2H</td>
<td>multiplet</td>
<td>Ar-H$_a$,a$'$</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>7.29-7.30</td>
<td>1H</td>
<td>doublet</td>
<td>Ar-H</td>
<td>7.5</td>
</tr>
<tr>
<td>7</td>
<td>7.41-7.42</td>
<td>2H</td>
<td>doublet</td>
<td>Ar-H$_b$,b$'$</td>
<td>7.5</td>
</tr>
<tr>
<td>8</td>
<td>7.68-7.69</td>
<td>2H</td>
<td>doublet</td>
<td>Ar-2H</td>
<td>7.5</td>
</tr>
<tr>
<td>9</td>
<td>8.02</td>
<td>1H</td>
<td>singlet</td>
<td>-NH</td>
<td>-</td>
</tr>
</tbody>
</table>
Studies on chemical...

Expanded aromatic region of NMR spectra

MASS SPECTRAL STUDIES OF 4-ARYL-4,5DIHYDRO-6-(THIOPHEN-2-YL)-2H-INDAZOLE-3(3aH)-ONE

Indazole
Studies on chemical...

PROPOSED MASS FRAGMENTATION OF 4-ARYL-4,5DIHYDRO-6-(THIOPHEN-2-YL)-2H-INDAZOLE-3(3aH)-ONE.

\[
\begin{align*}
\text{m/z} &= 328 (M^+) \\
\text{C}_{17}H_{13}ClS \\
\text{m/z} &= 288 \ (M^-) \\
\text{C}_{17}H_{13}ClS \\
\text{m/z} &= 162 (M^-) \\
\text{C}_9H_{10}N_2O \\
\text{m/z} &= 138 (M^-) \\
\text{C}_8H_{10}S
\end{align*}
\]

\[
\begin{align*}
\text{m/z} &= 328 \\
\text{C}_{17}H_{13}ClS \\
\text{m/z} &= 288 \ (M^-) \\
\text{C}_{17}H_{13}ClS \\
\text{m/z} &= 162 (M^-) \\
\text{C}_9H_{10}N_2O \\
\text{m/z} &= 138 (M^-) \\
\text{C}_8H_{10}S
\end{align*}
\]
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] Synthesis of (E)-1-Phenyl-3-(thiophen-2-yl)prop-2-en-1-ones
See Part - I, Section - II (A).

[B] Synthesis of Ethyl-4-(4-chlorophenyl)-6-oxo-2-(thiophen-2-yl)cyclohex-1-enecarboxylate
See Part - I, Section - II (B).

[C] Synthesis of 4-(4-Chlorophenyl)-4,5-dihydro-6-(thiophen-2-yl)-2H-indazole-3(3aH)-one
To a solution of Ethyl-4-(4-chlorophenyl)-6-oxo-2-(thiophen-2-yl)cyclohex-1-enecarboxylate(3.60gm, 0.01mol) in ethanol hydrazine hydrate (0.76gm, 0.01mol) was added and mixture was refluxed at 90 °C for 6 hrs on waterbath. The solid obtained upon cooling was filtered and crystallized from methanol. Yield 72%, M.P. 220 °C, Anal Calcd. for C_{17}H_{13}ClN_{2}O S: C, 62.10; H, 3.98 N, 8.52%, Found: C, 62.05; H, 3.95; N, 8.56%.

Similarly other 4-aryl-4,5dihydro-6-(thiophen-2-yl)-2H-indazole-3(3aH)-ones were prepared. The physical data are recorded in Table No. 8a.

[D] Antimicrobial activity of 4-Aryl-4,5dihydro-6-(thiophen-2-yl)-2H-indazole-3(3aH)-ones.
Antimicrobial testing were carried out as described in Part-I, Section-I (D). The zones of inhibition of test solutions are recorded in Table No. 8b.
Table-8a: Physical constants of 4-Aryl-4,5dihydro-6-(thiophen-2-yl)-2H-indazole-3(3aH)-ones

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution R</th>
<th>Molecular Formula/ Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition Calcd./Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>8a</td>
<td>C₆H₅</td>
<td>C₁₇H₁₄N₂OS 294.37</td>
<td>135</td>
<td>52</td>
<td>69.36 (69.19)</td>
</tr>
<tr>
<td>8b</td>
<td>2-Cl-C₆H₄⁻</td>
<td>C₁₇H₁₂ClN₂OS 328.81</td>
<td>124</td>
<td>59</td>
<td>62.10 (62.04)</td>
</tr>
<tr>
<td>8c</td>
<td>4-Cl-C₆H₄⁻</td>
<td>C₁₇H₁₂ClN₂OS 328.81</td>
<td>156</td>
<td>62</td>
<td>62.10 (62.00)</td>
</tr>
<tr>
<td>8d</td>
<td>3-Cl-C₆H₄⁻</td>
<td>C₁₇H₁₂ClN₂OS 328.81</td>
<td>142</td>
<td>58</td>
<td>62.10 (62.01)</td>
</tr>
<tr>
<td>8e</td>
<td>4-NO₂-C₆H₄⁻</td>
<td>C₁₇H₁₃N₂O₃S 339.36</td>
<td>149</td>
<td>51</td>
<td>60.17 (60.02)</td>
</tr>
<tr>
<td>8g</td>
<td>4-NH₂-C₆H₄⁻</td>
<td>C₁₇H₁₅N₂OS 309.38</td>
<td>154</td>
<td>44</td>
<td>66.00 (65.88)</td>
</tr>
<tr>
<td>8h</td>
<td>2-OH-C₆H₄⁻</td>
<td>C₁₇H₁₃N₂O₃S 310.37</td>
<td>162</td>
<td>38</td>
<td>65.79 (65.61)</td>
</tr>
<tr>
<td>8i</td>
<td>4-OH-C₆H₄⁻</td>
<td>C₁₇H₁₃N₂O₃S 310.37</td>
<td>148</td>
<td>64</td>
<td>65.79 (65.64)</td>
</tr>
</tbody>
</table>
TABLE 8B : ANTIMICROBIAL ACTIVITY OF 4-ARYL-4,5DIHYDRO-6-(THIOPHEN-2-YL)-2H-INDAZOLE-3(3aH)-ONES (in µg/ml)

<table>
<thead>
<tr>
<th>No.</th>
<th>Code No.</th>
<th>Antibacterial activity</th>
<th>Antifungal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gram +ve Bacteria</td>
<td>Gram -ve Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>1</td>
<td>8a</td>
<td>2000 + 1000 + 500 -</td>
<td>2000 + 1000 + 500 -</td>
</tr>
<tr>
<td>2</td>
<td>8b</td>
<td>+ + + + + + + + + + +</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>3</td>
<td>8c</td>
<td>+ + + + + + + + + + +</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>4</td>
<td>8d</td>
<td>+ + + + + + + + + + +</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>5</td>
<td>8e</td>
<td>+ + + + + + + + + + +</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>6</td>
<td>8g</td>
<td>+ + + + + + + + + + +</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>7</td>
<td>8h</td>
<td>+ + + + + + + + + + +</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>8</td>
<td>8i</td>
<td>+ + + + + + + + + + +</td>
<td>+ + + + + + + + + + +</td>
</tr>
</tbody>
</table>

Where (+) = New synthesized compounds were active against microorganism
(-) = New synthesized compounds were inactive against microorganism
Studies on chemical…

Indazole
Studies on chemical…

REFERENCE

Studies on chemical…

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Journal/Description</th>
</tr>
</thead>
</table>
Studies on chemical…

Part- B

(Part-II)

Studies on Mannich base Derivatives
INTRODUCTION

The study of manich reaction attracted a great deal of attention to the chemists because it plays a vital role due to their wide range of biological and industrial applications. Mannich bases are also employed as intermediate in chemical synthesis.1-3

Much interest has been focused on the synthesis of mannich bases due to its wide variety of pharmacological activities. Mostly, they are found to be antineoplastic, analgesic and antibiotic drugs. Several therapeutic important molecules prepared through manich reaction have received more attention in recent years.4-6 Mannich bases have gained important because of their technological application in polymer chemistry7, especially as paints and surface active agent and it also exhibits complexation characteristic with many transition metal ions.

SYNTHETIC ASPECT

Different methods have been cited to synthesized some new mannich bases by several co-workers using various interesting substrates.

1. Several new aminobenzylated mannich bases (2) have been prepared by condensing reaction between heterocyclic secondary amines, aldehydes and acetamide, urea and thiourea.11

\[
\begin{array}{c}
\text{XNH} + \text{HOC} \rightarrow \text{XNH} \\
\text{R} \quad \text{R}
\end{array}
\]

2. B. Anil Reddy9 have synthesized benzimidazole using manich base.

3. E. Philip Jesudason10 have prepared manich bases of benzimidazoles.
Studies on chemical...

4. Gabriela Laura Almajan et al. synthesized mannich bases (1) from some triazole moiety.

![Chemical structure](image)

BIOLOGICAL EVALUATION

A wide variety of pharmacological properties and industrial applications have been encountered with several mannich bases such as,

1. Antibacterial
2. Antitumor
3. Antiinflammatory
4. Cytotoxic Activity
5. AntiHIV
6. Antimalarial
7. Antiproliferation
8. Antiparasitic
9. Antitubercular
10. Antifungal
11. Anticancer

Several therapeutic important molecules containing heterocyclic secondary amines are well known. For example, Manafflazine is a famous antiarthritic agent and minorine is used as antidepressant.

S. K. Sridhar have synthesized some new mannich bases and screened for anti-inflammatory activity. A. R. Bhat et al. have reported mannich bases of quinoxaline and evaluated for their antibacterial, antifungal and antitubercular activities.
P. Y. Shirodkar and M. M. Vartak25 have studied the antitubercular activity of manich bases of 6-nitro-3-N-arylamino methyl-1,2,3,4-tetrahydro-4-oxo-2-thioquinolines (3).

Craig J. Roxburgh26 et al have reported manich bases and tested them for local anesthetic activity (4).

Christina Reichwald et al27 have synthesized manich bases of 9-tert-Butyl-2-phenylethinylpaullone from 1,3-diarylpropenones using aromatic aldehydes and acetophenone derivatives as starting materials and studied their antileishmanial activity.

Yan Huang, et al28 have synthesized some manich bases and reported as anticancer agent. Ya. L. Garazd et al29 have prepared manich bases of hydroxylcoumarines (6) which posses various biological activities.
Work done from our laboratory

K. S. Nimavat30 have synthesized some new aminobenzylated mannich bases from 3-bromobenzaldehyde and reported as an antimicrobial agent. Mannich bases of 4-amino-3-mercapto-5-pyridin-3'-yl-[1,2,4]-triazole reported by T. K. Dave31. Green chemistry approach to potentially bioactive aminobenzylated mannich bases through active hydrogen compounds reported by S. L. Vasoya32.

Thus with an effort to capitalize the biological potential of the heterocyclic system and to provide more interesting compounds for biological screening, we have under taken the synthesis of several mannich bases which has been described as under.

SECTION-I : SYNTHESI S AND BIOLOGICAL SCREENING OF N,N-

\((\text{DIALKYL/ARYLAMINO})(\text{THIOPHEN-2- YL)}\text{METHYL})\)

ACETAMIDES.
SECTION-I

SYNTHESIS AND BIOLOGICAL SCREENING OF N,N'-(DIALKYL/ARYL AMINO)(THIOPHEN-2-YL)METHYL)ACETAMIDES

Mannich bases compounds have gained interest in last several year due to their biological, physiological and therapeutic activity. With an intention to synthesizing better therapeutic drugs, we have synthesized some new amino benzylated mannich bases of type (IX) by condensation of acetamide with secondary amine and thiophene-2-carbaldehyde.

\[
R-H + \text{S}&\text{H}_2\text{CO-CH}_3 \rightarrow \text{R-N}_{\text{H}}-\text{O}_{\text{CH}_3}
\]

Type (IX)
S
O
R =
N
,
N
,
N
O
&
N
N
CH3

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and 1H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger*, *Candida albicans* at a concentration of 2000/1000/500 µg/ml. The biological activity of the synthesized compounds has been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.9b.
Studies on chemical…

IR SPECTRAL STUDIES OF N-(MORPHOLINO(THIOPHEN-2-YL) METHYL)ACETAMIDE.

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range: 4000-400 cm\(^{-1}\) (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm(^{-1})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Reported</td>
</tr>
<tr>
<td>Alkane</td>
<td>C-H str.</td>
<td>2929</td>
<td>2975-2940</td>
</tr>
<tr>
<td></td>
<td>C-H str. (sym.)</td>
<td>2852</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1438</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1365</td>
<td>1395-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>2929</td>
<td>2980-2940</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1519</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H I.p.(def)</td>
<td>1072</td>
<td>1125-1000</td>
</tr>
<tr>
<td></td>
<td>C-H o.o.p.</td>
<td>667</td>
<td>700-600</td>
</tr>
<tr>
<td>Thiophene</td>
<td>>C=S str.</td>
<td>1556</td>
<td>1590-1550</td>
</tr>
<tr>
<td>Mannich base</td>
<td>C-N str.</td>
<td>1365</td>
<td>1380-1310</td>
</tr>
<tr>
<td></td>
<td>C-O-C str.</td>
<td>1035</td>
<td>1075-1020</td>
</tr>
<tr>
<td>Amide</td>
<td>>C=O str.</td>
<td>1666</td>
<td>1695-1660</td>
</tr>
<tr>
<td>Amine</td>
<td>-NH-str</td>
<td>3271</td>
<td>3350-3000</td>
</tr>
</tbody>
</table>

Aminobenzylated Mannich bases
Studies on chemical...

NMR SPECTRAL STUDIES OF N-(MORPHOLINO(THIOPHEN2-YL) METHYL)ACETAMIDE

Instrumental Standard: TMS; Solvent: CDCl₃; Instrument: BRUKER Spectrometer (500MHz)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.98-2.0</td>
<td>3H</td>
<td>singlet</td>
<td>-CH₃</td>
</tr>
<tr>
<td>2</td>
<td>2.44-2.46</td>
<td>4H</td>
<td>multiplet</td>
<td>-2CH₂</td>
</tr>
<tr>
<td>3</td>
<td>3.65-3.66</td>
<td>4H</td>
<td>multiplet</td>
<td>-2CH₂</td>
</tr>
<tr>
<td>4</td>
<td>5.90</td>
<td>1H</td>
<td>singlet</td>
<td>-CH</td>
</tr>
<tr>
<td>5</td>
<td>6.99-7.00</td>
<td>1H</td>
<td>multiplet</td>
<td>-Ar-H</td>
</tr>
<tr>
<td>6</td>
<td>7.17-7.19</td>
<td>1H</td>
<td>multiplet</td>
<td>-Ar-H</td>
</tr>
<tr>
<td>7</td>
<td>7.57-7.75</td>
<td>1H</td>
<td>multiplet</td>
<td>-Ar-H</td>
</tr>
<tr>
<td>8</td>
<td>9.10</td>
<td>1H</td>
<td>singlet</td>
<td>-NH</td>
</tr>
</tbody>
</table>
Studies on chemical...

Expanded aromatic region of NMR spectra

MASS SPECTRAL STUDIES OF N-(MORPHOLINO(THIOPHEN-2-YL)METHYL)ACETAMIDE.
PROPOSED MASS FRAGMENTATION OF N,N-((DIALKYL /ARYL AMINO) (THIOPHEN-2-YL)METHYL)ACETAMIDES

![Chemical Structures]

- m/z = 198
 C₉H₁₄N₂OS

- m/z = 212
 C₁₀H₁₆N₂OS

- m/z = 226
 C₁₀H₁₄N₂O₂S

- m/z = 183
 C₆H₁₃NOS

- m/z = 240
 C₁₁H₁₆N₂O₂S

- m/z = 87
 C₄H₉NO

- m/z = 147
 C₆H₁₃NOS

- m/z = 115 (M⁺²)
 C₆H₁₃NO

- m/z = 101 (M⁻¹)
 C₆H₁₁NO

Aminobenzylated Mannich bases
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] Synthesis of N-(Morpholino(thiophen-2-yl)methyl)acetamide.

A mixture of acetamide (4.40gm, 0.075mol) and morpholin (4.35ml, 0.05mol) was stirred to get a clear solution and it was cooled in ice bath. Thiophene 2-carbaldehyde (5.6 gm, 0.05mol) was added to the cold solution and the reaction mixture was stirred for 3 hrs. at 5 °C in ice bath. A white semi solid was observed and stirred rarely. The crude product was washed with water and crystallized from methanol. Yield 57% m.p. 154 ºC Anal. Cald. For C_{11}H_{16}N_{2}O_{2}S, : C, 54.98 ; H, 6.71 ; N, 11.66 % Found : C, 54.92 ; H, 6.74 ; N, 11.64 %.

[B] Synthesis of N-((Piperidin-1-yl)(thiophen-2-yl)methyl)acetamide

A mixture of acetamide (4.40gm, 0.075mol) and piperidine (4.3ml, 0.05mol) was stirred to get a clear solution and it was cooled in ice bath. Thiophene 2-carbaldehyde (5.6 gm, 0.05mol) was added to the cold solution and the reaction mixture was stirred for 2hrs. at 5 ºC in ice bath. The resulting solution was kept at room temperature for a week and stirred intermittently. The crude product was washed with water and CCl₄, dried and crystallized from methanol. Yield 65% m.p. 123 ºC Anal. Cald. For C_{12}H_{18}N_{2}OS, : C, 60.47 ; H, 7.61 ; N, 11.75 % Found : C, 60.48 ; H, 7.58 ; N, 11.71 %.

[C] Synthesis of N-((1H-Indol-1-yl)(thiophen-2-yl)methyl)acetamide

A mixture of acetamide (4.40gm, 0.075mol) and indole (11.7gm, 0.1mol) was stirred to get a clear solution and it was cooled in ice bath. Thiophene 2-carbaldehyde (5.6
Studies on chemical...

gm, 0.05mol) was added to the cold solution and the reaction mixture was stirred for 1hrs. at 5 °C in ice bath. The solution was kept at room temperature for 3 days and stirred irregularly. The product was washed with water and

CCl₄, dried and crystallized from methanol. Yield 58% m.p. 131 °C Anal. Cald. For C₁₅H₁₄N₂O₂S, : C, 66.64 ; H, 5.22 ; N, 10.36 % Found : C, 66.61 ; H, 5.19 ; N, 10.31 %.

[D] Synthesis of N-((Diethyl amino)(thiophen-2-yl)methyl)acetamide

A mixture of acetamide (4.40gm, 0.075mol) and diethyl amine (0.73gm, 0.1mol) was stirred to get a clear solution and it was cooled in ice bath. Thiophene 2-carbaldehyde (5.6 gm, 0.05mol) was added to the cold solution and the reaction mixture was stirred for 6 hrs. at 5 °C in ice bath. The resulting solution was kept at room temperature for 5 days and stirred occasionally. The crude product was crystallized from methanol. Yield 71% m.p. 156 °C Anal. Cald. For C₁₁H₁₈N₂O₂S, : C, 58.37 ; H, 8.02 ; N, 12.38 % Found : C, 58.35 ; H, 8.01; N, 12.31 %.

Antimicrobial testing was carried out as described in Part-I, Section (D). The zones inhibitions of the compounds are recorded in Table No.9b.
Studies on chemical...

Table-9a: Physical constants of N,N-((Dialkyl/arylamino)(thiophen-2-yl)methyl) acetamides.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution R</th>
<th>Molecular Formula/Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition Calcd./Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>9a</td>
<td>O</td>
<td>C_{11}H_{16}N_{2}O_{2}S</td>
<td>240.32</td>
<td>57</td>
<td>C 54.98 (54.82) H 6.71 (6.54) N 11.66 (11.44)</td>
</tr>
<tr>
<td>9b</td>
<td></td>
<td>C_{12}H_{16}N_{2}O_{2}S</td>
<td>238.34</td>
<td>65</td>
<td>C 60.47 (61.36) H 7.61 (7.58) N 11.75 (11.61)</td>
</tr>
<tr>
<td>9c</td>
<td></td>
<td>C_{13}H_{16}N_{2}O_{2}S</td>
<td>270.34</td>
<td>58</td>
<td>C 66.64 (66.51) H 5.22 (5.19) N 10.36 (10.21)</td>
</tr>
<tr>
<td>9d</td>
<td>CH_{3}</td>
<td>C_{11}H_{16}N_{2}O_{2}S</td>
<td>226.33</td>
<td>71</td>
<td>C 58.37 (58.15) H 8.02 (7.91) N 12.38 (12.11)</td>
</tr>
</tbody>
</table>
TABLE 9B : ANTIMICROBIAL ACTIVITY OF N,N'-((DIALKYL/ARYLAMINO)(THIOPHEN-2-YL)) METHYL)ACETAMIDES (in µg/ml)

<table>
<thead>
<tr>
<th>No.</th>
<th>Code No.</th>
<th>Antibacterial activity</th>
<th>Antifungal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gram +ve Bacteria</td>
<td>Gram -ve Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>1.</td>
<td>9a</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>9b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>9c</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4.</td>
<td>9d</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Where (+) = New synthesized compounds were active against microorganism
(-) = New synthesized compounds were inactive against microorganism
Studies on chemical…

REFERENCE

Aminobenzylated Mannich bases

161
Aminobenzylated Mannich bases

Part- C

Studies on Imidazo[1,2-α] pyridine Derivatives
INTRODUCTION

Bridge nitrogen containing fused heterocycles represents important building blocks in both natural and synthetic bioactive compounds which have been shown to possess diverse therapeutic activities\(^\text{1}\). Hence they are interesting target to be prepared to our research on medicinally interesting heterocyclic entities. Aza-indolizine are of two types, imidazo[1,2-\(\alpha\)]pyridine (1) and imidazo[1,5-\(\alpha\)]pyridine (2).

![Structure 1](image1.png) ![Structure 2](image2.png)

The aza-indolizine contains a phenyl ring fused to a imidazole ring is indicated in the structure, hence it is also known as imidazo[1,2-\(\alpha\)]pyridine\(^\text{2}\). Several procedure for their synthesis have been extensively studied. Such studies have been stimulated by various promising applications, especially in the case of bridgehead nitrogen containing fused heterocyclic entities.

The constitution of imidazo[1,2-\(\alpha\)]pyridine was reviewed by W. L. Mosby\(^\text{3}\) in 1961. Imidazo[1,2-\(\alpha\)]pyridine derivatives not only known for their pharmacological applications, they are also used in disperse dyes\(^\text{4}\).

SYNTHETIC ASPECT

Classical methods have been reported in the literature for the synthesis of imidazo[1,2-\(\alpha\)]pyridines. The procedure for synthesizing imidazo[1,2-\(\alpha\)]pyridines have been described as under.
1. The synthesis of imidazo[1,2-α]pyridine from 2-aminopyridine with ω-bromoacetophenone was reported by Tschitschibabine⁵.

2. 2-Acetylimidazo[1,2-α]pyridine⁶ can be constructed by the cyclocondensation of 2-aminopyridine with bromo butanedione.

![Chemical Structure](image)

3. Reaction of 2-chloropyridine with 1,2,3-triazoles and subsequent elimination of nitrogen’s give the imidazo[1,2-α]pyridine⁷.

![Chemical Reaction](image)

4. Shankarappa A Biradar⁸ have synthesized 6-bromo-2-(3,4-dichlorophenyl)imidazo[1,2-α]pyridine using microwave irradiation from 5-bromo-2-aminopyridine And 2-bromo-1-(3,4-dichlorophenyl)ethanone.

![Chemical Structure](image)

5. Jumat Salimon⁹ et al. synthesized imidazo[1,2-α]pyridine-3(2H)-one & 3-Substituted-4-yl imidazo[1,2-α] pyridine from 2-aminopyridine.
6. Synthesis of imidazo[1,2-α]pyridines using catalytic zinc chloride microwave irradiation from 2-aminopyridine and aryl aldehyde by Amanda L. Rousseau10.

7. Synthesis of Cu(OTf)\textsubscript{2}-catalyzed imidazo[1,2-α]pyridines from α-diazoketones and 2-aminopyridines by J. S. Yadav11

8. Paudler et al.12 have synthesized 5-amino-3-formylimidazo[1,2-α]pyridine from acid catalyzed hydrolysis of 1,4-diazacycl[3,2,2]azine.
Studies on chemical...

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\begin{array}{c}
\text{N} \\
\text{H} \\
\text{N} \\
\text{ONH}_2
\end{array} & \quad \begin{array}{c}
\text{H} \\
\text{H} \\
\text{H}
\end{array} & \quad \begin{array}{c}
\text{N} \\
\text{N}
\end{array} \\
\text{H} & \quad \text{N} \\
\text{3O} & \quad \text{+}
\end{align*}
\]

166

Introduction

9. Zhu Dongjian et al.\(^{13}\) have synthesized imidazo[1,2-\(\alpha\)]pyridines from 2-aminopyridine and phenasyl bromide at R.T.

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{N} \\
\begin{array}{c}
\text{N} \\
\text{H}
\end{array} & \quad \begin{array}{c}
\text{PhC(=O)CH}_2\text{Br}
\end{array} \\
\text{CH}_3 & \quad \text{10 min, rt}
\end{align*}
\]

MECHANISM

The majority of imidazo[1,2-\(\alpha\)]pyridine have been synthesized by the reaction of 2-aminopyridine with a \(\alpha\)-halocarbonyl compound which form oniumhalide which is further cyclize at room temperature to gives imidazo[1,2-\(\alpha\)]pyridine.

BIOLOGICAL EVALUATION

Imidazo[1,2-\(\alpha\)]pyridines are potential bioactive agents due to their wide spectrum of therapeutic importance. A large number of substituted imidazo[1,2-\(\alpha\)]pyridine derivatives are prepared and tested for varieties of biological activities such as,

1. Anti-inflammatory, anti cancer\(^{14}\)
Studies on chemical…

2. Antiviral^{15,16}
3. Antianxiety^{17}
4. Antiulcer^{18,19}
5. Antifungal agents^{20}
6. Anthelmintic^{21}
7. Antibacterials^{22,23}
8. Hypnotic^{24}
9. Antiherpetie^{25,26}
10. Gastric antisecretory^{27,28}
11. Hypnoselective and anxioselective^{29}
12. b-Amyloid formation inhibitors^{30}
13. Benzodiazepine receptor agonists^{31}
14. Nonsedative anxiolytic^{32}
15. Active nonpeptide bradykinin B₂ receptor antagonists^{33}
16. Cardiotonic agents^{34}
17. Anticytomegalovirus and antivaricellazoster virus^{35-37}
18. Long-acting local anesthetic^{38}
19. Calcium channel blockers^{39}

Alexander C. Humphries and co-workers^{40} have synthesized 8-fluoro imidazo[1,2-\(\alpha\)]pyridine derivatives (7) and evaluated as a bioisosteric replacement for imidazo[1,2-\(\alpha\)]pyridine in an allosteric modulator ligand of the GABA\(_A\) receptor. Carlos Jaramillo, and co-workers^{41} reported Stereo dynamics of Ar–CO rotation and conformational preferences of 2-amino-3-(2,4-difluorobenzoyl)-imidazo[1,2-\(\alpha\)]pyridine. I. Aramori et
Studies on chemical…

al.42 have been synthesized imidazo[1,2-\(\alpha\)]pyridine derivatives which are highly potent and selective non-peptide bradykinin receptor antagonist (8).

Several imidazo[1,2-\(\alpha\)]pyridine nucleus already in market which include alpidem43 [a ligand of both the central benzodiazepine receptors and the peripheral type (Mitochondrial) benzodiazepine receptor] has sedative and anxiolytic properties and zolpidem43 [a selective ligand for the central benzodiazepine receptor] is a hypnotic drug. Both alpidem and zolpidem have higher affinity for benzodiazepine-1 than for benzodiazepine-2 receptors44 and their interaction with various receptor has been reported45.

James J. Kaminski and co-workers46 have investigated imidazo[1,2-\(\alpha\)]pyridine derivative 3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)imidazo[1,2-\(\alpha\)]pyridine (9) for an antiulcer activity. On the basis of the reported metabolism of zolimidine, they reported
that the 3-cyanomethyl and 8-phenylmethoxy group have been established as metabolic sites.

\[
\begin{align*}
\text{Zolmidine} & \\
(9) & \\
\end{align*}
\]

Brian A. Johns et al.\(^47\) and Chaouni-Bendallah A. et al.\(^48\) synthesized a novel imidazo[1,2-\(\alpha\)]pyridines (10) with potent activity against Herpes Simplex viruses. J. T. Starr et al.\(^49\) have synthesized 5-(2-Pyrimidinyl)-imidazo[1,2-\(\alpha\)]pyridines (11) from 2-amino-4-bromo-6-ethoxycarbonylpyridine and evaluated as a anti bacterial agent.

\[
\begin{align*}
\text{(10)} & \\
\text{(11)} & \\
\end{align*}
\]

Sebastien Follot et al.\(^50\) have synthesized 2-(4-Fluorophenyl)-6-iodo-3-pyridin-4-limidazo[1,2-\(\alpha\)]pyridine (12) from 6-iodo-2-(4-fluorophenyl)imidazo[1,2-\(\alpha\)]pyridine and evaluated as anti-apoptosis agents. Imidazo[1,2-\(\alpha\)]pyridine units appear as important building blocks in both natural and synthetic bioactive compounds\(^51-53\) and recognition on DNA binding and to yield different pharmacokinetic profile.

Introduction
Mohamed A. Ismail and co-workers54 have synthesized some newer diamine imidazo[1,2-\(\alpha\)]pyridine (13), 5,6,7,8-tetrahydo imidazo[1,2-\(\alpha\)]pyridines and their corresponding N-hydroxy and N-methoxy analogues and evaluated against Trypanosoma b. rhodesiense (T. B. rhodesiense) and Plasmodium falciparum (P. falciparum). Luke R. Odell and co-workers55 have synthesized 6-substituted 3-amino-imidazo[1,2-\(\alpha\)]pyridines (14) which has active again Mycobacterium tuberculosis glutamine synthetase inhibitors. R. B. Lacerda and co-workers56 have find out a novel analgesic and anti-inflammatory 3-arylamino- imidazo [1,2-\(\alpha\)] pyridine.

Thus the important role displayed by imidazo[1,2-\(\alpha\)]pyridine and its derivatives for various therapeutic and biological activities prompted us to synthesize some Chalcones, Acetyl pyrazolines, Cyano pyridines, Thiopyrimidines, Oxopyrimidines, Mannich bases Isoxazoles, Schiff bases, Imidazolinone derivatives bearing Imidazo[1,2-\(\alpha\)]pyridine moiety in order to achieve compounds having better therapeutic activities described as in the following parts.
Studies on chemical…

PART-I : SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF PYRAZOLE.

PART-II : SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF ARYLAMINOMETHYL MANNICH BASE DERIVATIVES.
REFERENCES

Studies on chemical…

Studies on chemical...

Part- C

(Part-I)

Studies on Chalcone Derivatives
INTRODUCTION

The term *Chalcone* was first coined by Kostanecki and Tambor\(^1\), who did pioneering work in the synthesis of natural coloring compounds. The chemistry of chalcones has generated intensive precise studies all over the world, especially interesting for their biological and industrial applications. Chalcones are colored compounds because of the presence of the chromophore and auxochromes. They are known as benzalacetophenones or benzylidene acetophenones.

Chalcones (1) are characterized by their possession of a structure in which two aromatic rings are linked by an aliphatic three carbon chain.

![Chemical Structure of Chalcone](image)

(1)

The chalcones were known from different names like phenyl styryl ketones, beanzalacetophenone, \(\alpha\)-phenyl acrylphenone, \(\gamma\)-oxo-\(\alpha,\gamma\)-diphenyl-\(\alpha\)-propylene and \(\alpha\)-phenyl-\(\alpha\)-benzoethylene.

SYNTHETIC ASPECT

Claisen-Schmidt condensation

A significant variety of methods are existing in literature for the synthesis of chalcones. The most convenient way is the Claisen-Schmidt condensation which involves aryl methyl ketones with aryl aldehyde in presence of alcoholic alkali\(^2\).

Various modifications have been applied to Claisen-Schmidt condensation to get better yield and to synthesize biologically active analogs. Different catalysts have been reported to increase the yield of the reaction. Microwave synthesis strategies have also
applied to shorten the reaction time. Solid phase synthesis and combinatorial chemistry has made possible to generate library of chalcone derivatives.

Solid-Phase Synthesis

During the past two decades, combinatorial chemistry has appeared as one of the most valuable tools used to accelerate drug discovery and lead optimization processes. The emergence of this new field has promoted the transfer of solution-phase functional group transformations to the solid phase.

A. R. Katritzky and coworker have synthesized chalcone derivatives by using sodium methoxide as a catalyst and Wang resin as a solid support. Jian Cao and group reported polymer-supported selenium-induced solid–phase synthesis. Recently Kamal Ahmed et al demonstrated solid-phase synthetic protocol for the chalcone and its derivatives.

Liquid-Phase Synthesis

In the solid phase synthesis there are some disadvantages of this methodology compared to standard solution-phase synthesis, such as difficulties to monitor reaction progress, the large excess of reagents typically used in solid-phase supported synthesis, low loading capacity and limited solubility during the reaction progress and the heterogeneous reaction condition with solid phase.

Recently S. Yongjia et al reported soluble polymer-supported synthesis of chalcone derivatives. Saravanamurugan and coworker used ZSM-5 catalyst and Liquid phase synthesis strategy for the derivative preparation. E. V. Stoyanov and group demonstrated liquid phase synthesis of 2'-hydroxychalcone derivatives.
Microwave Assisted Synthesis

Microwave irradiation (MWI) has become an established tool in organic synthesis, because of the rate enhancements, higher yields and often, improved selectivity with respect to conventional reaction conditions10.

In recent years, solvent free reactions using either organic or inorganic solid supports have received increasing attention. K. Mogilaiah and coworker describe synthesis of chalcones with p-toluene sulphonic acid (PTSA) as a catalyst under microwave irradiation and solvent free conditions11, S. Katade et al. reported recently the synthesis of chalcones with microwave irradiation and reported the reaction time decreases and overall yield of the product was increases12.

Catalysts

The other catalysts employed in synthesis and some time with advantages are alkali of different strength13,14, hydrochloric acid15,16, phosphorous oxychloride17, piperidine18, anhydrous aluminium chloride19, boron trifluoride20, amino acids21, perchloric acid22 etc. recently S. Ryo and group reported synthesis using Ruthenium as a catalyst and get better yield23.

Chalcones can also be synthesized by condensing several other reagents instead of an aldehyde and ketone.

1. Nencki reaction with cinnamic acid on an aromatic compounds24.
2. Diazo coupling of phenyl diazonium chloride with benzoyl acrylic acid25.
3. Friedel craft's cinnamoylation26.
4. Fries rearrangement of aryl cinnamates27.
The following two mechanisms have been suggested for the synthesis of chalcones.

(A) Base catalyzed

(B) Acid catalyzed

(A) Base catalyzed:

Two alternative mechanisms were advanced for the reaction of benzaldehyde with acetophenone in the presence of a basic catalyst\(^{28}\).

\[
\begin{align*}
&\text{R}^1\text{C}^\text{=}\text{H} + \text{HO}^- \rightleftharpoons \text{R}^1\text{C}^\text{=}\text{O}^- \\
&\text{R}^1\text{C}^\text{=}\text{O}^- + \text{O}\text{C=CH}_2 \rightleftharpoons \text{R}^1\text{C}\text{=}\text{C}=\text{CH}_2 \text{ OR} \text{R}^1\text{C}\text{=}\text{CH}_2\text{OR} \rightleftharpoons \text{R}^1\text{C}^\text{=}\text{H} + \text{HO}^- \\
&\text{R}^1\text{C}\text{=}\text{C}=\text{CH}_2 \text{ OR} \text{R}^1\text{C}\text{=}\text{CH}_2\text{OR} \rightleftharpoons \text{R}^1\text{C}^\text{=}\text{H} + \text{HO}^-
\end{align*}
\]

The intermediate aldol type products formed readily undergoes dehydration even under mild condition, particularly when R and R’ are aryl groups.

(B) Acid catalyzed:

The formation of chalcones by the acid catalyzed condensation of acetophenones and aldehydes has been studied\(^{29}\). The rate of reaction depends on the first power of the
Studies on chemical…

concentration of aldehyde and the Hammet acidity function. Also the condensation step has been shown to be the rate determining step in this reaction. The following mechanism seems to be operable.

\[
\begin{align*}
\text{OCH}_3 & \rightarrow \text{HOCH}_2 \\
\text{O} & \rightarrow \text{O}^-
\end{align*}
\]

\[
\begin{align*}
\text{HOCH}_2 & + \text{OH}^- \\
\rightarrow & \text{HOC} = \text{C} = \text{OH} \\
\rightarrow & \text{HOC} = \text{C} = \text{O}^-
\end{align*}
\]

\[
\begin{align*}
\text{R} & \text{C} = \text{CH} = \text{C} \text{R}' \\
\rightarrow & \text{R} = \text{C} = \text{C} \text{R}' \\
\rightarrow & \text{R} = \text{C} = \text{CO} \text{R}'
\end{align*}
\]

REACTIVITY OF CHALCONES

The chalcones have been initiated to be useful for the syntheses of multiplicity of heterocyclic compounds are as under.

1. Chalcones with alkaline hydrogen peroxide in methylene dichloride gives oxirane.\(^{30}\)

2. Chalcones with tertiary amine and N-methylmorpholinium salt in acetonitrile by using o-(diphenyl phosphinyl)hydroxylamine produces aziridines.\(^{31}\)

3. Chalcones on reaction with benzamidine hydrochloride under microwave assisted condition in DMF affords dihydropyrimidines.\(^{32}\)

4. Chalcones on reaction with 2-aminopyridine in glacial acetic acid affords pyridopyrimidines.\(^{33}\)

5. Chalcone gives imine derivatives with amine in presence of sulfuric acid as catalyst.\(^{34}\)
6. Chalcones on condensation with malononitrile in pyridine forms 2-amino-3-cyanopyrans.\(^{35}\)

7. Chalcones on reaction with thiourea in presence of alkali/acid yields 2-thienopyrimidines.\(^{36}\)

8. Chalcones react with P\(_2\)S\(_5\) yielded 2-isothiazidines.\(^{37}\)

9. Chalcones react with sodium nitrile in presence of glacial acetic acid in ethanol produces 2-1H-pyrimidines.\(^{38}\)

10. Isoxazoles\(^{39}\) can be prepared by the treatment of chalcones with hydroxylamine hydrochloride and sodium acetate.

11. Chalcones on condensation with 2-aminobenzothiazole in ethanol forms 2,3-dihydro-1,5-benzothiazepine.\(^{40}\)

12. Pyrazoline\(^{41}\) and its derivatives can be prepared by the condensation of chalcones with hydrazine hydrate and acetic acid.

13. Chalcones on treatment with guanidine hydrochloride in presence of alkali affords 2-amino pyrimidines.\(^{42}\)

14. Cyanopyridone derivatives\(^{43}\) can be prepared by the condensation of chalcones with ethyl cyanoacetate.

BIOLOGICAL EVALUATION

Chalcones are potential biocides, some naturally occurring antibiotics and amino chalcones probably own their genetic activity due to the presence of α,β-unsaturated carbonyl group. Few of them are as below.

1. Antibacterial\(^{44}\)

2. Antifeedant\(^{45}\)
Studies on chemical…

3. Antitubercular

4. Antimalarial

5. Antioxidant

6. Antifilarial

7. Anti-oedematogenic

8. Antimicrobial

9. Antihistaminic

10. Anticancer

11. Anti-Leishmania

12. Anti-inflammatory

Nakahara Kazuhiko et al. have synthesized chalcones as carcinogen inhibitors. Antitubercular agents of chalcone derivatives have been prepared by Lin Yuh-Meei et al. Ko Horng-Huey et al. have reported chalcones as anti-inflammatory agents. Some of the chalcones have been reported for their use for treatment of glaucoma and showed antifungal, aldose reductase inhibitors, anticancer activities. Satyanarayana M. et al. have synthesized chalcone (2) derivatives as anti hyperglycemic activity.

\[
\text{HO} \quad \text{CH}_3 \quad \text{OH} \quad \text{O} \quad \text{C} \quad \text{H} \quad \text{3} \quad \text{C} \quad \text{H} \quad \text{3} \quad \text{O} \\
\text{R} \\
(2)
\]

Hollosy F. et al. have prepared some new chalcones as plant derived protein tyrosine kinase inhibitors as anticancer agents. Meng C. Q. et al. have discovered some novel heteroaryl substituted chalcones as inhibitors of TNF-alpha-induced VCAM-1 expression. V. K. Ahluwalia et al. have noted that 5-cinnamoylchalcones have exposed
Studies on chemical…

good as antibacterial agents. Woo Duck Seo et al.73 have synthesized chalcone derivatives (3) reported as α-glucosidase inhibitors.

\[
\begin{array}{c}
\text{H}_3\text{C} & \text{O} & \text{NH} & \text{C}_6\text{H}_5 \\
\text{O} & \text{O} & \text{S} & \text{R}
\end{array}
\]

(3)

A. Araico and co-workers74 have synthesized chalcone derivatives as inhibitor of cyclo-oxygenase-2 and 5-lipoxygenase. Alcaraz M. J. et al.75 have described the role of nuclear factor-kappa-B and hemeoxygenase-1 in the action of an anti-inflammatory chalcone derivatives in RAW 264.7 cells. Xue C. X. et al.76 documented chalcones as antimalarial agents. Prem P. Yadav and co-workers77 have synthesized nitrogen and sulfur containing furanoflavonoids and thiophenylflavonoids which have been screened for antifungal and antibacterial activity. Opletalova Veronika et al.78 have synthesized chalcones and screened for their cardiovascular agents. H. H. Ko et al.79 have prepared some new chalcones for potent inhibition of platelet aggregation. S. Khatib et al.80 synthesized some novel chalcones as potent tyrosinase inhibitors. Fu Y. et al.81 have demonstrated chalcones as licochalcone-A. O. Nerya et al.82 have prepared some new chalcones as potent tyrosinase inhibitors. Sung Hee Lee and co-workers83 have designed and synthesized chalcones and reported their anti-inflammatory activity. Paula Boeck, Camila Alves and Bartira Rossi-Bergmann84 have synthesized some newer chalcone analogues (4) which shows antileishmanial activity.
Studies on chemical…

Xiang Wu et al.85 have synthesized ferrocenyl chalcones and reported their antiplasmodial activity. Ban H. S. et al.86 have synthesized some newer chalcones as inhibition of lipopolysaccharide-induced expression of inducible nitric oxide syntheses and tumor necrosis factor-alpha by 2'-hydroxychalcone derivatives in RAW 264.7 cells. Simon Feldbaek Nielsen et al.87 have described some chalcone derivatives (5) as antibacterial agents.

Moreover, Aneta Modzelewska et al.88 have prepared novel chalcone and bis chalcone derivatives having anticancer activity. Seo et al.89 reported the chalcones as a glucosidase inhibitors.

Work done from our laboratory

V. V. Kachhadia90 have synthesized some chalcone derivatives (6) as antimicrobial and antitubercular agent. K. H. Popat91,92 have synthesized some chalcone derivatives(7) as antitubercular agents from 3-chlorobenzaldehyde.
Synthesis of some chalcone derivatives from aromatic aldehyde have been reported by P. T. Chovatia. D. H. Vyas reported some new pyrazoline (8) and isoxazole derivatives as antitubercular and antimicrobial agent and he also synthesized some new cyanopiperidinones (9) and cyanopyridones, pyrazoline derivatives as a antimicrobial agent.

D. J. Paghdar have reported chalcone derivatives bearing 4-(methylsulfonyl) phenyl nucleus (10) as potent antitubercular and antimicrobial agents. Synthesis and evaluation of pharmacological activity of chalcone derivatives (11) have been reported by M. R. Patel. Synthesis of some new pyrazolo[3,4-d]pyrimidines and thiazolo[4,5-d]pyrimidines from arylidine and reported their antimicrobial activities by J. D. Akbari.
Chalcones have been proved to be an important intermediate for the synthesis of many heterocyclic compounds in organic chemistry. These facts prompted us to synthesize some new chalcone derivatives bearing imidazo[1,2-a]pyridine nucleus, in order to achieving better therapeutic agents described as under.

SECTION-I: SYNTHESIS AND BIOLOGICAL SCREENING OF \((2E)\)-3-(2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO[1,2-a]PYRIDIN-3-YL)-1-ARYLPROP-2-EN-1-ONES
SECTION-I

SYNTHESIS AND BIOLOGICAL SCREENING OF \((2E)\)-3-(2-(4-FLUOROPHENYL)-6-METHYL\(H\)-IMIDAZO[1,2-\(\alpha\]]PYRIDIN-3-YL)-1-ARYLPROP-2-EN-1-ONES.

With the biodynamic activities of chalcons and as a fine synthon for different heterocyclic rings, the awareness has been paying attention on the creation of new chalcones. With a observation to obtained compounds having better therapeutic activity, we have synthesized \((2E)\)-3-(2-(4-fluorophenyl)-6-methyl\(H\)-imidazo[1,2-\(\alpha\])pyridin-3-yl)-1-arylprop-2-en-1-ones. by the condensation of 2-(4-fluorophenyl)-6-methyl\(H\)-imidazo[1,2-\(\alpha\])pyridine-3-carbaldehyde. with various aromatic ketones by using alkali as catalyst.

\[
\text{Type (X) } R = \text{ Aryl}
\]

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and \(^1\)H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry.

All the compounds have been screened for their \textit{in vitro} biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards \textit{Aspergillus niger}, \textit{Candida albicans} at a concentration of 2000/1000/500 \(\mu\)g/ml. The biological activity of the synthesized compounds have been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No10b.
REACTION SCHEME

\[
\begin{align*}
\text{H}_3\text{C}-\text{N} & \quad \text{Cl} \\
\text{N} & \quad \text{O} \\
\text{C} & \quad \text{H}_3\text{F} \\
\text{N} & \quad \text{O} \\
\text{H}_3\text{C} & \quad \text{F} \\
\text{N} & \quad \text{O} \\
\text{H}_3\text{C} & \quad \text{F} \\
\text{N} & \quad \text{O} \\
\text{H}_3\text{C} & \quad \text{F} \\
\end{align*}
\]

DMF
140°C

DMF + POCl₃
Reflux 8-hrs

Type (X)
Studies on chemical...

IR SPECTRAL STUDIES OF (2E)-3-(2-(4-FLUOROPHENYL))-6-METHYLH-IMIDAZO[1,2-a]PYRIDIN-3-YL)-1-(4-METHOXYPHENYL)PROP-2-EN-1-ONE.

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm⁻¹</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkane</td>
<td>C-H str.</td>
<td>2951</td>
<td>2975-2940</td>
</tr>
<tr>
<td></td>
<td>C-H str. (sym.)</td>
<td>2845</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1456</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1394</td>
<td>1395-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>2951</td>
<td>2980-2930</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1541</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H I.p.(def)</td>
<td>1030</td>
<td>1125-1000</td>
</tr>
<tr>
<td></td>
<td>C-H o. o. p.</td>
<td>669</td>
<td>700-600</td>
</tr>
<tr>
<td>Imidazo[1,2-a]pyridine</td>
<td>C=N</td>
<td>1599</td>
<td>1612-1593</td>
</tr>
<tr>
<td></td>
<td>C-N</td>
<td>1166</td>
<td>1220-1020</td>
</tr>
<tr>
<td>Chalcone</td>
<td>C=C str.</td>
<td>1577</td>
<td>1580-1550</td>
</tr>
<tr>
<td></td>
<td>C=O str.</td>
<td>1647</td>
<td>1640-1700</td>
</tr>
<tr>
<td>Vinyl</td>
<td>CH=CH str</td>
<td>3024</td>
<td>3050-3000</td>
</tr>
<tr>
<td>Ether</td>
<td>C-O-C str</td>
<td>1222</td>
<td>1260-1200</td>
</tr>
<tr>
<td>Halide</td>
<td>C-F str.</td>
<td>1166</td>
<td>1200-1000</td>
</tr>
</tbody>
</table>
Studies on chemical...

NMR SPECTRAL STUDIES OF \((2E)-3-(2-(4-FLUOROPHENYL))-6-\text{METHYLH-IMIDAZO}[1,2-a]\text{PYRIDIN}-3-YL)-1-(4-METHOXYPHENYL)PROP-2-EN-1-ONE.\)

![NMR spectrum](image)

Instrumental Standard : TMS; Solvent: CDCl\textsubscript{3}; Instrument : BRUKER Spectrometer (500MHz)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.45</td>
<td>3H</td>
<td>singlet</td>
<td>-CH\textsubscript{3}</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3.89</td>
<td>3H</td>
<td>singlet</td>
<td>-OCH\textsubscript{3}</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>6.96-6.98</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Ha-a'</td>
<td>9.0</td>
</tr>
<tr>
<td>4</td>
<td>7.19-7.26</td>
<td>3H</td>
<td>multiplet</td>
<td>-Ar-H</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>7.44-7.47</td>
<td>2H</td>
<td>multiplet</td>
<td>-Ar-H</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>7.62-7.64</td>
<td>1H</td>
<td>doublet</td>
<td>-CH=CH</td>
<td>8.5</td>
</tr>
<tr>
<td>7</td>
<td>7.69-7.70</td>
<td>1H</td>
<td>doublet</td>
<td>-CH=CH</td>
<td>7.5</td>
</tr>
<tr>
<td>8</td>
<td>7.76-7.82</td>
<td>1H</td>
<td>multiplet</td>
<td>-Ar-H</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>7.91-7.93</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hb,b'</td>
<td>8.5</td>
</tr>
<tr>
<td>10</td>
<td>8.29</td>
<td>1H</td>
<td>singlet</td>
<td>-Ar-H</td>
<td>-</td>
</tr>
</tbody>
</table>
Studies on chemical...

Expanded aromatic region of NMR spectra

Mass Spectral Studies of (2E)-3-(2-(4-Fluorophenyl)-6-MethylH-Imidazo[1,2-a]Pyridin-3-Yl)-1-(4-Methoxyphenyl)Prop-2-En-1-One.
PROPOSED MASS FRAGMENTATION OF (2E)-3-(2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO[1,2-a]PYRIDIN-3-YL)-1-(4-METHOXYPHENYL)PROP-2-EN-1-ONE.
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating metal. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] **Synthesis of 2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-a]pyridine.**

A solution of 6-methylpyridin-2-amine (27.0gm, 0.25mol) in DMF(100 ml) was added to 2-chloro-1-(4-fluorophenyl)ethanone (15.4gm, 0.1mol) and the reaction mixture was refluxed with stirring for 6 hrs. Cool the content, the solid separated was filtered and dried in vacuo. Yield 68%, m.p192 °C, Anal. Calcd. for C_{11}H_{14}FN_{2}: Require: C, 74.32, H, 4.90, N, 12.38 % ; Found: C, 74.30, H, 4.96, N, 12.35 %.

[B] **Synthesis of 2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-a]pyridine-3-carbaldehyde.**

To a well stirred solution of phosphorus oxychloride (11 ml), chloroform (32 ml) and DMF (8 ml) maintained at 0-10 °C. was added slowly to a solution of 2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-a]pyridine. (4.52gm, 0.02mol) in chloroform (140 ml). The mixture so obtained was refluxed for 8 hrs., the solution was evaporated to dryness in vacuo. the residue was treated with cold water and filtered and crystallized from methanol. Yield 59%, m. p. 186 °C , Anal. Calcd. for C_{15}H_{11}FN_{2}O Require: C, 70.86, H, 4.36, N, 11.02 %; Found: C, 70.81, H, 4.29, N, 11.01 %.
Studies on chemical...

[C] Synthesis of (2E)-3-(2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-α]pyridin-3-yl)-1-(4-methoxyphenyl)prop-2-en-1-one.

To a solution of 2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-α]pyridine-3-carbaldehyde (2.54 gm, 0.01 mol), p-methoxyacetophenone (1.5 gm, 0.01 mol) in ethanol (25 ml) and 40% NaOH solution was added till the solution become basic. The reaction mixture was stirred for 24 hrs. The content was poured on to crushed ice. Upon neutralization the solid separated was crystallized from ethanol. Yield 61%; m.p. 209 °C. Anal. Calcd. For C_{24}H_{19}FN_{2}O_{2}; Required : C, 74.60; H, 4.96; N, 7.25%; Found: C, 74.55; H, 4.91; N, 7.19%.

Similarly other (2E)-3-(2-(4-fluorophenyl)-6-methylH-imidazo[1,2-α]pyridin-3-yl)-1-arylprop-2-en-1-ones have been prepared. The physical constants are recorded in Table No.10a.

Antimicrobial testing was carried out as described in part-(I), section-I(D). The zones of inhibition of compounds are recorded in Graphical Chart No.10b.
Studies on chemical…

Table 10a: Physical constants of \((2E)-3-(2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-\alpha]pyridin-3-yl)-1-arylprop-2-en-1-ones.\)

\[
\text{H}_2\text{C} \quad \text{N} \quad \text{F} \quad \text{O} \quad \text{C} \quad \text{H}_3
\]

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution (R)</th>
<th>Molecular Formula/ Molecular Weight</th>
<th>M.P. (^\circ C)</th>
<th>Yield</th>
<th>% Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>10a</td>
<td>(C_6H_5^-)</td>
<td>(\text{C}_2\text{H}_7\text{FN}_2\text{O}356.39)</td>
<td>166</td>
<td>65</td>
<td>77.51 (77.39) 4.81 (4.64) 7.86 (7.79)</td>
</tr>
<tr>
<td>10b</td>
<td>4-CH(_3)-C(_6)H(_4)(^-)</td>
<td>(\text{C}_2\text{H}_9\text{FN}_2\text{O370.41})</td>
<td>147</td>
<td>62</td>
<td>77.82 (77.64) 5.17 (5.01) 7.56 (7.44)</td>
</tr>
<tr>
<td>10c</td>
<td>2-CH(_3)-C(_6)H(_4)(^-)</td>
<td>(\text{C}_2\text{H}_9\text{FN}_2\text{O372.43})</td>
<td>158</td>
<td>58</td>
<td>77.82 (77.69) 5.17 (5.00) 7.56 (7.31)</td>
</tr>
<tr>
<td>10d</td>
<td>2,5-(CH(_3))(_2)-C(_6)H(_5)(^-)</td>
<td>(\text{C}_2\text{H}_3\text{FN}_2\text{O384.44})</td>
<td>152</td>
<td>59</td>
<td>78.10 (78.04) 5.51 (5.34) 7.29 (7.17)</td>
</tr>
<tr>
<td>10e</td>
<td>4-OCH(_3)-C(_6)H(_4)(^-)</td>
<td>(\text{C}_2\text{H}_9\text{FN}_2\text{O2386.41})</td>
<td>209</td>
<td>61</td>
<td>74.60 (74.45) 4.96 (4.81) 7.25 (7.19)</td>
</tr>
<tr>
<td>10f</td>
<td>2,4-(Cl)(_2)-C(_6)H(_3)(^-)</td>
<td>(\text{C}_2\text{H}_1\text{Cl}_2\text{FN}_2\text{O425.28})</td>
<td>176</td>
<td>47</td>
<td>64.96 (64.11) 3.56 (3.48) 6.59 (6.38)</td>
</tr>
<tr>
<td>10g</td>
<td>4-Cl-C(_6)H(_4)(^-)</td>
<td>(\text{C}_2\text{H}_1\text{ClFN}_2\text{O390.83})</td>
<td>165</td>
<td>69</td>
<td>70.68 (70.44) 4.13 (4.04) 7.17 (7.01)</td>
</tr>
<tr>
<td>10h</td>
<td>3-Cl-C(_6)H(_4)(^-)</td>
<td>(\text{C}_2\text{H}_1\text{ClFN}_2\text{O390.83})</td>
<td>158</td>
<td>68</td>
<td>70.68 (70.41) 4.13 (4.07) 7.17 (7.06)</td>
</tr>
<tr>
<td>10i</td>
<td>4-NO(_2)-C(_6)H(_4)(^-)</td>
<td>(\text{C}_2\text{H}_1\text{NO}_3\text{O401.38})</td>
<td>189</td>
<td>55</td>
<td>68.82 (68.79) 4.02 (3.93) 10.47 (10.39)</td>
</tr>
<tr>
<td>10j</td>
<td>4-F-C(_6)H(_4)(^-)</td>
<td>(\text{C}_2\text{H}_1\text{F}_2\text{N}_2\text{O374.38})</td>
<td>197</td>
<td>49</td>
<td>73.79 (73.66) 4.31 (4.19) 7.48 (7.38)</td>
</tr>
</tbody>
</table>
TABLE 10B : ANTIMICROBIAL ACTIVITY OF (2E)-3-(2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO[1,2-a]PYRIDIN-3-YL)-1-ARYLPROP-2-EN-1-ONES. (in µg/ml)

<table>
<thead>
<tr>
<th>No.</th>
<th>Code No.</th>
<th>Antibacterial activity</th>
<th>Antifungal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gram +ve Bacteria</td>
<td>Gram -ve Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 1000 500</td>
<td>2000 1000 500</td>
</tr>
<tr>
<td>1</td>
<td>10a</td>
<td>- - - + + - - - - - -</td>
<td>+ + + + + + + + + + -</td>
</tr>
<tr>
<td>2</td>
<td>10b</td>
<td>+ + - + + - + + + + + + + + + + +</td>
<td>+ + - + + + + + + + + +</td>
</tr>
<tr>
<td>3</td>
<td>10c</td>
<td>+ + + + + + + - + + + + + + + + + +</td>
<td>+ + - + + + + + + + + +</td>
</tr>
<tr>
<td>4</td>
<td>10d</td>
<td>- - - + + - - - - - - - - - -</td>
<td>+ + - + + + + + + + + +</td>
</tr>
<tr>
<td>5</td>
<td>10e</td>
<td>- - - + + - - - - - - - - - -</td>
<td>+ + - + + + + + + + + +</td>
</tr>
<tr>
<td>6</td>
<td>10f</td>
<td>+ + - + + + + + + + + + + + + + -</td>
<td>+ + - + + + + + + + + +</td>
</tr>
<tr>
<td>7</td>
<td>10g</td>
<td>+ + - + + + - + + + + + + + + +</td>
<td>+ + - + + + + + + + + +</td>
</tr>
<tr>
<td>8</td>
<td>10h</td>
<td>+ + + + + + + + + + + + + + + + +</td>
<td>+ + - + + + + + + + + +</td>
</tr>
<tr>
<td>9</td>
<td>10i</td>
<td>+ + + + + - + + + + + + + + + -</td>
<td>+ + - + + + + + + + + +</td>
</tr>
<tr>
<td>10</td>
<td>10j</td>
<td>+ + - + + + - + + + + + + + + +</td>
<td>+ + - + + + + + + + + +</td>
</tr>
</tbody>
</table>

Where (+) = New synthesized compounds were active against microorganism

(-) = New synthesized compounds were inactive against microorganism
Studies on chemical...

REFERENCES

Studies on chemical…

Studies on chemical…

Studies on chemical...

Studies on chemical...

82. O. Nerya, R. Musa, S. Khatib, S. Tamir, J. Vaya; *Phytochemistry*, 65(10), 1389-1395 (2004).

Part- C

(Part-I)

Studies on Pyrazole Derivatives
INTRODUCTION

The chemistry of pyrazoles has been reviewed by C. H. Jarobe in 1967. Pyrazoles have attracted attention of medicinal chemists for both with regard to heterocyclic chemistry and the pharmacological activities associated with them. Pyrazole have been studied extensively because of ready accessibility, diverse chemical reactivity, broad spectrum of biological activity\(^1\) and varieties of industrial applications\(^2\).

Pyrazole has three possible tautomeric structures, but 2-pyrazole (1) consist a unique class of nitrogen containing five member heterocycles.

\[
\begin{align*}
\text{N} & \\
\text{H} \\
\end{align*}
\]

As evident from the literature in recent years a significant portion of research work in heterocyclic chemistry has been devoted to pyrazoles containing different alkyl, aryl and heteroaryl groups as substituents.

SYNTHETIC ASPECT

Different methods are available from the literature for the preparation of 2-pyrazole derivatives. The most common procedure for the synthesis of 2-pyrazoles is the reaction of an aliphatic or aromatic hydrazine with \(\alpha,\beta\)-unsaturated carbonyl compounds.

\[
\begin{align*}
\text{R}^1\text{O} & \\
\text{R}^2 & \\
\text{R}^3 & \\
\text{R}^4 & \\
\text{R}^5 & \\
\end{align*}
\]

Alternative synthetic routes for improved yield, shorter reaction time and milder conditions to synthesize new analogs

Solid-Phase Synthesis

L. L. De\(^3\) reported cellulose beads as a new versatile solid support for Microwave-assisted synthesis of pyrazole and isoxazole libraries.
Wang resin supported solid-phase synthesis of pyrazoledicarboxylic acid derivatives by functionalization of cyanoformate was reported by C. F. Morelli et al.\(^4\)

Similarly many other solid phase synthesis of pyrazole motif were reported using different solid support such as (4-formyl-3-methoxyphenoxy)methylpolystyrene (FMP) resin\(^5\), polymer-supported vinylsulfone\(^6\), Kenner ‘safety catch’ resin\(^7\), KOH powder\(^8\).

Liquid-Phase Synthesis

X. L. Ren and coworkers\(^9\) have synthesized pyrazole derivatives using liquid phase synthesis strategy.

V. N. Pathak and group reported 3,5-diarylpyrazole synthesis using phase transfer catalyst\(^10,11\), heterocyclic pyrazole was synthesized by the W. C. Shen and coworkers\(^12\).

Microwave Assisted Synthesis

Microwave irradiation and solvent-free conditions was reported for the rapid and efficient synthesis by M. A. H. Zahran\(^13\).
New "Green" approaches to the synthesis of pyrazole derivatives were reported by A. Corradi et al.14

Similarly in literature there are number of the report that uses the microwave irradiation for the rapid synthesis, high yield or towards the green approach of the reaction under solvent free conditions some of them are reported as below.

S. S. Chauhan derives pyrazoles from diaryl 1,3-diketones15 and also several author documented pyrazoles from 1,3-dipolar cycloaddition of diazo compounds to acetylene derivatives16, regiospecific synthesis of 5-trifluoromethyl-4,5-dihydropyrazoles17, micro wave mediated combinatorial synthesis18, under dry media19, synthesis of trichloromethylpyrazolines20, catalyzed by p-toluenesulphonic acid21, microwave studies on synthesis22.

P. D. Sauzem23 reported deign and microwave-assisted synthesis of 5-trifluoromethyl-4,5-dihydro-1\textsubscript{H}-pyrazoles, and one step synthesis of 3,5-disubstituted pyrazoles were carried out by M. Outirite24.

Catalysts

Many of the organic chemists prefer to use catalyst to get the desire product with high yield and within sort reaction time and to convert the reaction condition from drastic to easily operational with some specific catalyst.

R. Ali reported stereoselective synthesis of N-vinyl pyrazoles in solvent-free conditions using dipotassium hydrogen phosphate powder25, Zinc-catalyzed synthesis of pyrazolines and pyrazoles via Hydrohydrazination were reported by K. Alex26.
In literature there are number of the catalysts are used for the synthesis of pyrazole system like Conjugate base27, Iodine(III)28, Hafnium chloride29, Tungstophosphoric acid30, p-toluenesulphonic acid31, Sulfamic acid32, Ytterbium(III)perfluorooctanoate33, Silver(I)34, organocatalysts35.

REACTION MECHANISM

The following mechanism seems to be operable for pyrazoline by the condensation of chalcones with hydrazine hydrate36.

Nucleophillic attack by hydrazine at the β-carbon of the α,β-unsaturated carbonyl system I forms species II, in which the negative charge is mainly accommodated by the electronegative oxygen atom.

Proton transfer from the nitrogen to oxygen produces an intermediate and which simultaneously ketonises to ketoamine III. Another intramolecular nucleophillic attack by
the primary amino group of ketoamine on its carbonyl carbon followed by proton transfer from nitrogen to oxygen leads ultimately to hydroxyl amine IV. The later with a hydroxy group and amine group on the same carbon loses water easily to yield the pyrazolines V.

BIOLOGICAL EVALUATION

From the literature survey, it was revealed that 2-pyrazolines are better therapeutic agents. They possess valuable bioactivities like

1. Antiinflammatory37,38
2. Analgesic39,40
3. Bactericidal41
4. Fungicidal42,43
5. Anticonvulsant44
6. Pesticidal45,46
7. Antidepressant47
8. Antiamoebic48
9. Insecticidal49
10. Antineoplastic50,51
11. Herbicidal52

M. K. Shivnanda and co-workers53 have prepared pyrazolines and reported their antibacterial activity. Antimycotic activity of pyrazoline derivatives (2) have been reported by Joanna Matysiak and Andrzej Niewiadomy54. J. Almstead et al.55 have prepared pyrazolines as vascularization agent. T. Z. Gulhan and coworkers56 have prepared pyrazolines as a hypotensive agent.
S. Sharma et al.57 have synthesized pyrazolines and tested their anti-inflammatory activity. Antiamoebic activity of pyrazoline derivatives have been reported by Asha Budakoti and co-workers58. J. H. Ahn et al.59 have reported as inhibition of cyano-pyrazoline (3) derivatives as potent antidiabetic agents. T. S. Jeong et al.60 have synthesized some novel 3,5-diaryl pyrazolines (4) as human acyl-Co A: cholesterol acyltransferase inhibitors. G. Ucar et al.61 reported pyrazolines as cholinstearase and selective monoamine oxidase-B inhibitors for the treatment of parkinson and alzheimer’s diseases. M. N. Nasr et al.62 have reported the synthesis of newer arylthiazolylpyrazoline derivatives as anti-inflammatory agents. M. A. Berghot et al.63 have prepared for convergent synthesis and antibacterial activity of pyrazole and pyrazoline derivatives of diazepam.

\begin{center}
\begin{tabular}{c}
(3) \\
\includegraphics[width=0.4\textwidth]{image1.png}
\end{tabular}
\end{center}

N. Gokhan et al.64 have synthesized the pyrazoline derivatives of 1-\textit{N}-substituted thiacarbamoyl-3-phenyl-5-thienyl-2-pyrazolines (5) as MAO inhibitors. Mohammad Abid and Amir Azam65 have synthesized 1-\textit{N}-substituted cyclized pyrazoline of thiosemicarbazones (6) and reported as antiamoebic agents. V. Malhotra et al.66 have documented new pyrazolines as a cardiovascular agents. Antidepressant activity of pyrazoline derivatives have been reported by Y. R. Prasad and co-worker67.

\begin{center}
\begin{tabular}{c}
(5) \\
\includegraphics[width=0.4\textwidth]{image2.png}
\end{tabular}
\end{center}
Abd El-Galil E. Amr et al. have synthesized some new 3-substituted androstano[17,16-c]-5,2-aryl-pyrazolines and reported their antiandrogenic activity. B. Bizzarri et al. have reported in vitro selective anti-helicobacter pylori activity (7) of pyrazoline derivatives. Bhat and co-workers reported cytotoxic properties of pyrazoline derivatives. Antibacterial activity of pyrazoline derivatives have been reported by A. M. Gandhi and co-workers. B. S. Holla et al. have synthesized pyrazolines as antibacterial agents. S. P. Hiremath et al. have synthesized pyrazolines as analgesic, anti-inflammatory and antimicrobial agents. Rajendra Prasad et al. have synthesized some 1,3,5-triphenyl-2-pyrazolines (8) and 3-(2"-hydroxynaphthalen-1"-yl)-1,5-diphenyl-2-pyrazolines and reported as antidepressant agents. J. H. M. Lange et al. synthesized and reported 3,4-diaryl pyrazoline analogues as potent and selective CB\textsubscript{1} cannabinoid receptor antagonists. N. T. Ha-Duong et al. have been synthesized some pyrazole derivatives as inhibitors for the active sites of human liver cytochromes P450 of the 2C subfamily.

X. Zhang and co-workers have been prepared pyrazoline derivatives (9) as potent selective androgen receptor modulators. M. E. Camacho and co-workers have been reported 4,5-dihydro pyrazoles (10) as Inhibitory nNOS activity in rat brain.
F. Chimenti and co-workers79 have been demonstrated a novel series of 1-acetyl-3-(4-hydroxy-and 2,4-dihydroxyphenyl)-5-phenyl-4,5-dihydro-(1\textit{H})-pyrazole derivatives (11) and investigated for the ability to selectively inhibit the activity of monoamine oxidase (MAO). Y. R. Huang et al.80 have been prepared a series of 4-alkyl-1,3,5-triarylpyrazoles (12) as ligands for the estrogen receptor. C. D. Cox et al.81 and J. R. Goodell et al.82 have been reported separately some pyrazoline derivatives as anti-obesity agents by antagonizing CB\textsubscript{1} receptors and therapeutic candidates for parkinson’s disease. A series of 3-(4-fluorophenyl)-4,5-dihydro-N-[4-(trifluoromethyl)-phenyl]-4-[5-(trifluoromethyl)-2-pyridyl]-1\textit{H}-pyrazole-1-carboxamide has been synthesized and studied for their potent foliar activity against both lepidoptera and orthoptera insects by P. K. Leonard et al.83 Bruce G. Szczepankiewicz et al.84 have been prepared some pyrazole derivatives as ant mitotic agents with activity in multi-drug resistant cell lines.

Guniz Kuchkguzel et al.85 have synthesized pyrazolines as a antimicrobial and anticonvulsant agents. Gulhan T. Z. and co-workers86 have prepared pyrazolines as a hypotensive agent.

\textbf{Work done from our laboratory}

K. S. Nimavat87 have synthesized 1-substituted 3-aryl-5-(3’-bromophenyl)-pyrazolines and studied anticancer, antitubercular and antimicrobial activity. D. H. Vyas88 reported synthesis and biological activity of some pyrazoline derivatives bearing 3,5-dibromo-4-methoxybenzaldehyde nucleus.
Studies on chemical…

P. T. Chovatia89 have been reported 1-acetyl-3,5-diphenyl-4,5-dihydro-(1\textit{H})-pyrazole derivatives as a antitubercular and antimicrobial agent. T. K. Dave90 reported synthesis, antitubercular and antimicrobial evaluation of pyrazole derivatives bearing nicotinic acid nucleus. Synthesis of some pyrazolo[3,4-\textit{d}]pyrimidines and thiazolo[4,5-\textit{d}]pyrimidines and evaluation of their antimicrobial activities with derivatives of urea and thiourea was reported by J. D. Akbari91,92.

Literature survey reveals that the compounds bearing pyrazole moiety possess potential drug activity. Looking to the diversified biological activities we have synthesized some pyrazole derivatives in order to achieving better therapeutic agents. These studies are described in following section.

SECTION-II :- SYNTHESIS AND BIOLOGICAL SCREENING OF 1-(5-(2-(4-FUOROPHENYL)-6-METHYL\textit{H}-IMIDAZO[1,2-\textit{a}]PYRIDIN-3-YL)-4,5-DIHYDRO-3-ARYLPYRAZOL-1-YL)ETHANONES.
STUDIES ON CHEMICAL…

SECTION-II

SYNTHESIS AND BIOLOGICAL SCREENING OF 1-(5-(2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO[1,2-α]PYRIDIN-3-YL)-4,5-DIHYDRO-3-ARYL PYRAZOL-1-YL)ETHANONES.

Pyrazolines play a vital role owing of their wide range of biological activity and with an aim to getting better drug, it was considered worthwhile to synthesize some new acetyl pyrazolines. The preparation of 1-(5-(2-(4-fluorophenyl)-6-methylH-imidazo[1,2-α]pyridin-3-yl)-4,5-dihydro-3-arylpyrazol-1-yl)ethanones. Type(XI) have been undertaken by cyclocondensation of chalcones of Type (X) with hydrazine hydrate in glacial acetic acid.

\[
\begin{align*}
\text{Type (X)} & \quad R = \text{Aryl} \\
\text{Type (XI)} & \quad R = \text{Aryl}
\end{align*}
\]

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and \(^1\text{H}\) nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their \textit{in vitro} biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards \textit{Aspergillus niger, Candida albicans} at a concentration of 2000/1000/500 μg/ml. The biological activity of the synthesized compounds has been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.11b.
Studies on chemical...

IR SPECTRAL STUDIES OF 1-(5-[(2- (4-FLUOROPHENYL)-6-METHYLH]-IMIDAZO[1,2-α]PYRIDIN-3-YL)-4,5-DIHYDRO-3-(4-METHOXYPHENYL) PYRAZOL-1-YL) ETHANONE.

![IR Spectrum](image)

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range: 4000-400 cm⁻¹ (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm⁻¹</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Reported</td>
</tr>
<tr>
<td>Alkane</td>
<td>C-H str.</td>
<td>2933</td>
<td>2975-2930</td>
</tr>
<tr>
<td></td>
<td>C-H str. (sym.)</td>
<td>2877</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1442</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1396</td>
<td>1395-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>2933</td>
<td>2980-2930</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1545</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H L.p.(def)</td>
<td>1033</td>
<td>1125-1000</td>
</tr>
<tr>
<td></td>
<td>C-H o.o.p.</td>
<td>615</td>
<td>700-600</td>
</tr>
<tr>
<td>Imidazo[1,2-α]pyridine</td>
<td>C=N str.</td>
<td>1589</td>
<td>1612-1593</td>
</tr>
<tr>
<td></td>
<td>C-N str.</td>
<td>1033</td>
<td>1220-1020</td>
</tr>
<tr>
<td>Acetyl Pyrazoline</td>
<td>C=O str.</td>
<td>1577</td>
<td>1700-1612</td>
</tr>
<tr>
<td></td>
<td>C=N str.</td>
<td>1656</td>
<td>1612-1593</td>
</tr>
<tr>
<td>Ether</td>
<td>C-O-C str.</td>
<td>1240</td>
<td>1260-1200</td>
</tr>
<tr>
<td>Halide</td>
<td>C-F str.</td>
<td>1091</td>
<td>1200-1000</td>
</tr>
</tbody>
</table>
Studies on chemical...

NMR SPECTRAL STUDIES OF 1-(5-(2-(4-FLUOROPHENYL))-6-METHYLH-IMIDAZO[1,2-a]PYRIDIN-3-YL)-4,5-DIHYDRO-3-(4-METHOXYPHENYL)PYRAZOL-1-YL)ETHANONE.

Instrumental Standard : TMS; Solvent: CDCl$_3$; Instrument: BRUKER Spectrometer (500MHz)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.24</td>
<td>3H</td>
<td>singlet</td>
<td>-CH$_3$</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1.77-1.78</td>
<td>1H</td>
<td>doublet</td>
<td>-CH</td>
<td>8.0</td>
</tr>
<tr>
<td>3</td>
<td>1.97-1.98</td>
<td>1H</td>
<td>doublet</td>
<td>-CH</td>
<td>8.0</td>
</tr>
<tr>
<td>4</td>
<td>2.44</td>
<td>3H</td>
<td>singlet</td>
<td>-COCH$_3$</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3.79</td>
<td>3H</td>
<td>singlet</td>
<td>-OCH$_3$</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>5.14-5.26</td>
<td>1H</td>
<td>multiplet</td>
<td>-CH</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>7.19-7.26</td>
<td>4H</td>
<td>multiplet</td>
<td>-Ar-4Ha,a'&b,b'</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>7.44-7.45</td>
<td>1H</td>
<td>multiplet</td>
<td>-Ar-H</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>7.62-7.64</td>
<td>1H</td>
<td>doublet</td>
<td>-Ar-H</td>
<td>10.5</td>
</tr>
<tr>
<td>10</td>
<td>7.68-7.71</td>
<td>1H</td>
<td>multiplet</td>
<td>-Ar-H</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>7.77-7.82</td>
<td>1H</td>
<td>multiplet</td>
<td>-Ar-H</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>7.91-7.93</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hc,c'</td>
<td>8.0</td>
</tr>
<tr>
<td>13</td>
<td>8.29</td>
<td>1H</td>
<td>singlet</td>
<td>-Ar-H</td>
<td>-</td>
</tr>
</tbody>
</table>
Studies on chemical...
Studies on chemical... PROPOSED MASS FRAGMENTATION OF 1-(5-(2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO[1,2-α]PYRIDIN-3-YL)-4,5-DIHYDRO-3-(4-METHOXYPHENYL)PYRAZOL-1-YL)ETHANONE.
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] **Synthesis of (2E)-3-(2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-α]pyridin-3-yl)-1-arylprop-2-en-1-ones.**

See Part-III[A]. Section-I [C].

[B] **Synthesis of 1-(5-(2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-α]pyridin-3-yl)-4,5-dihydro-3-(4-methoxyphenyl)pyrazol-1-yl)ethanone.**

A mixture of (2E)-3-(2-(4-fluorophenyl)-6-methylH-imidazo[1,2-α]pyridin-3-yl)-1-arylprop-2-en-1-ones. (3.86gm, 0.01mol) and hydrazine hydrate (0.04mol, 99 %) in 20 ml acetic acid was refluxed on an oil-bath for 10-11 hrs. The solution was poured on crushed ice. The product was isolated and crystallized from dioxane. Yield 65%, m. p. 186 °C , Anal. Calcd. for C_{26}H_{23}FN_{4}O_{2} Require: C, 70.57, H, 5.24, N, 12.66 %; Found: C, 70.59, H, 5.28, N, 12.69 %.

[E] **Antimicrobial activity of 1-(5-(2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-α]pyridin-3-yl)-4,5-dihydro-3-(4-methoxyphenyl)pyrazol-1-yl)ethanone.**

Antimicrobial testing was carried out as described in part-(I), section-I(D). The zones of inhibition of compounds are recorded in Table No.11b.
Table-11a: Physical constants of 1-(5-(2-(4-Fluorophenyl)-6-methylimidazo[1,2-
a]pyridin-3-yl)-4,5-dihydro-3-arylpyrazol-1-yl)ethanones.

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution R</th>
<th>Molecular Formula/ Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition Caled./Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11a</td>
<td>C₆H₅⁻</td>
<td>C₂₅H₂₂FN₄O₄ 412.15</td>
<td>197</td>
<td>61</td>
<td>72.80 (72.68)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.13 (5.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.58 (13.25)</td>
</tr>
<tr>
<td>11b</td>
<td>4-CH₃-C₆H₅⁻</td>
<td>C₂₅H₂₂FN₄O₄ 426.48</td>
<td>167</td>
<td>58</td>
<td>73.22 (73.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.44 (5.23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.14 (13.01)</td>
</tr>
<tr>
<td>11c</td>
<td>2-CH₃-C₆H₅⁻</td>
<td>C₂₅H₂₂FN₄O₄ 426.48</td>
<td>174</td>
<td>49</td>
<td>73.22 (73.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.44 (5.39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.14 (13.03)</td>
</tr>
<tr>
<td>11d</td>
<td>2,5-(CH₃)₂-C₆H₅⁻</td>
<td>C₂₅H₂₂FN₄O₄ 440.51</td>
<td>152</td>
<td>66</td>
<td>73.62 (73.49)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.72 (5.66)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.72 (12.49)</td>
</tr>
<tr>
<td>11e</td>
<td>4-OCH₃-C₆H₅⁻</td>
<td>C₂₅H₂₂FN₄O₂ 442.48</td>
<td>186</td>
<td>65</td>
<td>70.57 (70.39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.24 (5.18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.66 (12.49)</td>
</tr>
<tr>
<td>11f</td>
<td>2,4-(Cl)₂-C₆H₅⁻</td>
<td>C₂₅H₁₉ClF₄N₄O₄ 481.90</td>
<td>157</td>
<td>61</td>
<td>62.38 (62.26)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.98 (3.86)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.64 (11.54)</td>
</tr>
<tr>
<td>11g</td>
<td>4-Cl-C₆H₅⁻</td>
<td>C₂₅H₂₀ClF₄N₄O₄ 446.34</td>
<td>165</td>
<td>51</td>
<td>67.19 (67.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.51 (4.26)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.54 (12.36)</td>
</tr>
<tr>
<td>11h</td>
<td>3-Cl-C₆H₅⁻</td>
<td>C₂₅H₂₁ClF₄N₄O₄ 446.34</td>
<td>154</td>
<td>45</td>
<td>67.19 (66.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.51 (4.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.54 (12.31)</td>
</tr>
<tr>
<td>11i</td>
<td>4-NO₂-C₆H₅⁻</td>
<td>C₂₅H₂₀F₄N₄O₃ 457.45</td>
<td>163</td>
<td>53</td>
<td>65.64 (65.39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.41 (4.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.31 (15.16)</td>
</tr>
<tr>
<td>11j</td>
<td>4-F-C₆H₅⁻</td>
<td>C₂₅H₂₀F₂N₄O 430.44</td>
<td>210</td>
<td>46</td>
<td>69.76 (69.36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.68 (4.47)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.02 (12.92)</td>
</tr>
</tbody>
</table>
TABLE 11B : ANTIMICROBIAL ACTIVITY OF 1-(5-(2-(4-FLUOROPHENYL)-6-METHYLHIMIDAZO[1,2-a]PYRIDIN-3-YL)-4,5-DIHYDRO-3-ARYLPYRAZOL-1-YL(ETHANONES). (in µg/ml)

<table>
<thead>
<tr>
<th>No.</th>
<th>Code No.</th>
<th>Antibacterial activity</th>
<th>Antifungal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gram +ve Bacteria</td>
<td>Gram -ve Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>1.</td>
<td>11a</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2.</td>
<td>11b</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3.</td>
<td>11c</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4.</td>
<td>11d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5.</td>
<td>11e</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6.</td>
<td>11f</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7.</td>
<td>11g</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8.</td>
<td>11h</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9.</td>
<td>11i</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10.</td>
<td>11j</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Where (+) = New synthesized compounds were active against microorganism

(-) = New synthesized compounds were inactive against microorganism
Studies on chemical...
Studies on chemical…

REFERENCES

Studies on chemical...

Studies on chemical...

Studies on chemical...

Part- C

(Part-II)

Studies on Arylaminomethyl Derivatives
INTRODUCTION

Azomethine derivatives have been found to be potent drug in pharmaceutical industries and possess a wide spectrum of biological activity. Azomethines are also known as schiff’s base named after Hugo schiff, and they are well known intermediate for the preparation of azetidinone, thiazolidinone, formazone, aryl acetamide and many other derivatives. These are the compounds contain characteristic -C=N group. B. S. Holla et al.1 have documented azomethine (1) having triazole moiety and possess good antibacterial activity.

\[
\begin{array}{c}
\text{R} \\
\text{R}^1
\end{array}
\]

Azomethines are obtained mainly by warming the aldehyde and aromatic amine together. However, it is more convenient to work in a solvent such as alcohol, dilute acetic acid or glacial acetic acid. Some time the reaction is aided by trace of acid in other cases the hydrochloride of the amines can be used in the synthesis.

In general schiff’s bases do not react further with either of the reagents used in their preparation as do most of the other types of simple intermediates.

SYNTHETIC ASPECT

Various methods for the preparation of azomethine derivatives have been cited in literature, some of the methods are as under.

1. General account of the summary of reaction of aldehydes with amine (aromatic or aliphatic) has been reviewed by Murray.2
Studies on chemical...

2. E. C. Creencia and group\(^3\) reported synthesis from ortho substituted aniline with 55\% yield in 2 hrs. in benzene.

3. D. Bleger et al.\(^4\) have synthesized schiff’s base of aniline and benzaldehyde in ethanol with short reaction time of 4 hrs. and reported E isomer as major product.

4. U. K. Roy and coworkers\(^5\) have reported preparation of schiff’s base with 100\% of yield with toluene as a solvent.

5. L. B. Pierre and coworkers\(^6\) have synthesized (\(E\))-\(N\)-phenyl methylene glycineethyl ester by the cyclocondensation of glycine ethyl ester hydrochloride, \(t\)-butylmethyl ether (TBME), benzaldehyde was added followed by anhydrous \(\text{Na}_2\text{SO}_4\) and triethylamine.
Studies on chemical…

\[
\text{HCl, } \overset{\text{O}}{\text{H}}_2\overset{\text{N}}{\text{C}}\overset{\text{H}}{\text{3}}\overset{\text{O}}{\text{C}} + \overset{\text{O}}{\text{C}}\overset{\text{C}}{\text{H}}_\text{3}\overset{\text{O}}{\text{H}}_2\overset{\text{N}}{\text{C}}\overset{\text{H}}{\text{3}}\overset{\text{O}}{\text{C}} \xrightarrow{\text{B}_{3}\text{N}, \text{TBME}} \overset{\text{O}}{\text{C}}\overset{\text{C}}{\text{H}}_\text{3}\overset{\text{O}}{\text{C}}\overset{\text{C}}{\text{H}}_\text{3}\overset{\text{O}}{\text{C}}
\]

6. J. G. Amanda et al.\(^7\) have prepared Schiff bases by condensation of equimolar quantity of 3,6-diformylcatechol and substituted o-phenylenediamine.

7. L. Somogyi\(^8\) reported some azomethine derivatives of phenylhydrazide in 99 % yield and with short reaction time of 3.5 hours in polar solvent.

8. Schieff’s base of o-phenelene diamine with substituted benzaldehyde was reported by M. Zintl and coworkers\(^9\).

BIOLOGICAL EVALUATION

Schiff bases exhibit a wide range of pharmacological activities like antifungal, antibacterial, antiviral, anti-inflammatory etc. R. H. Mehta et al.\(^{10}\) have synthesized...
Studies on chemical…

coumarin Schiff’s base derivatives (2) and examined for their antibacterial activity. A. K. Khalafallah and M. E. Hassan have prepared some styryl Schiff’s bases spiro derivatives as potential antibacterial and antifungal activity. P. Perumal have synthesized some azomethine derivatives (3) having good antibacterial activity.

\[R\overset{\text{N}}{\rightarrow}N\overset{\text{O}}{\rightarrow}N\overset{\text{O}}{\rightarrow}R \]
(2)

M. D. Deshmukh and A. G. Doshi prepared some new Schiff’s bases show good antimicrobial activity against test organism *S. aureus, E. coli, Saigella dysenteridse* and *Salmonella typhi*. Wang et al. have synthesized diazomethines having good plant hormone activity. Das Arima et al. have prepared Schiff’s bases of aminohydroxy guanidine (SB-AHG5) and tested for antiviral activity against Herpes Simplex virus Type I (HSV-1) and adenovirus Type-5 (Ad-5).

Ali, Yusuf et al. have synthesized some Schiff’s base derivatives of glucose containing acetylenic bond. The prepared Schiff bases were tested for their bactericidal activity against *E. coli* and *S. aureus*.

B. S. Holla et al. have prepared Schiff’s bases and reported them as antimicrobial agents. Pandey Taruna et al. prepared azomethines and their boron complexes and screened for their antifungal and antibacterial properties. It is evident that azomethines along with quite toxic but their activity increased after complexation. Omar et al. have determined cyclocondensation of azomethines having good antischistosomal activity. Chohan and coworkers have synthesized a novel class of acetyl ferrocene
Studies on chemical…
derived from schiff bases possess antimicrobial activity. Some azomethine derivative screened for various antibacterial strains.

Das Joydip et al.22 have synthesized trans-N-refinylidene-n-butylamine (4) which found stabilized in liposome’s of phophatidylcholine. The rate of formation of the schiff’s base is found to decrease with increasing cholesterol concentration in the membrane. V. M. Patel23 has synthesized some new schiff’s bases having good antibacterial activity.

\begin{center}
\includegraphics[width=0.5\textwidth]{schiff_base}
\end{center}

Ram Tilak et al.24 have synthesized some schiff’s bases, of 2-chloro phenothiazines and screened against carrageenin-induced edema in albino rats. A. Cascaval et al.25 have synthesized azomethines, which have good analgesic and antipyretic properties. S. N. Pandeya et al.26 have synthesized schiff bases showed good activity against \textit{Vibrio cholerae non-o.}, \textit{Shigella boydii}, \textit{Enterococcus faecalis} and \textit{Edwardsiella torla} with MIC in the rang of 10-25 μg/ml. Some compounds were found to be active against \textit{Salmonellal typhi} and \textit{Vibro cholerae-0}, (MIC 25-150 μg/ml).

K. N. Venugopal et al.27 have synthesized schiff base of 4-hydroxy-6-carboxyhydrazino benzothiophene analog with different substituted aldehydes and determined pharmacological study. Ergenc and coworkers28 have synthesized azomethine derivatives having antifungal activity. B. Yadav and S. S. Sangapure29 have synthesized some azomethines and tested for their biological activity. B. S. Holla et al.30 have prepared some new schiff’s bases having anticancer activity.
R. V. Chambhare et al.31 have prepared some azomethines and tested for their antimicrobial activity. M. S. Karthikeyan et al.32 have synthesized azomethines (5) having antibacterial and anti-inflammatory activity.

Work done from our laboratory

K. M. Thaker et al.33 have prepared some schiff bases bearing benzo[b]thiophene nucleus and tested for their antitubercular and antimicrobial activity. S. L. Vasoya34 reported facile synthesis of some new azomethines bearing benzo[b]thiophene nucleus as a potent biological active agent. T. K. Dave35,36 have been reported synthesis and pharmacological study of Mannich bases of 4-amino-3-mercapto-5-pyridin-3'-yl-[1,2,4]-triazole and schiff base bearing nicotinic acid nucleus with antitubercular and antimicrobial evaluation.

Looking to the interesting properties of azomethines, we have synthesized some new azomethines, which have been described as under.

\textbf{SECTION-I: SYNTHESIS AND BIOLOGICAL SCREENING OF \textit{N-(2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO [1,2-α]PYRIDIN-3-YL]METHYLENE}-4-ARYLAMINES.}

\textbf{SECTION-II: SYNTHESIS AND BIOLOGICAL SCREENING OF \textit{N-(2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO [1,2-α]PYRIDIN-3-YL)METHYLYL]-4-ARYLAMINES.}
SECTION-I
SYNTHESIS AND BIOLOGICAL SCREENING OF N-(2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO [1,2-α]PYRIDIN-3-YL]METHYLENE)-4-ARYLAMINES.

Looking to the interesting properties of azomethines, with an intension to synthesizing better therapeutic agents, azomethine derivatives of Type (XII) have been synthesized by the condensation of 2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-α]pyridine-3-carbaldehyde with different aromatic amines in order to study their biodynamic behavior.

![Type (XII) R= Aryl](image)

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and 1H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their in vitro biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards Aspergillus niger, Candida albicans at a concentration of 2000/1000/500 µg/ml. The biological activity of the synthesized compounds have been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.12b.
IR SPECTRAL STUDIES OF N(2-(4-FLUOROPHENYL)-6-METHYLIMIDAZO[1,2-α]PYRIDINE-3-YL)METHYLENE)-4-METHYLBENZENAMINE.

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range: 4000-400 cm\(^{-1}\) (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm(^{-1})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Reported</td>
</tr>
<tr>
<td>Alkane</td>
<td>C-H str.</td>
<td>2962</td>
<td>2975-2940</td>
</tr>
<tr>
<td></td>
<td>C-H str. (sym.)</td>
<td>2868</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1448</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1373</td>
<td>1395-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>2962</td>
<td>2980-2930</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1487</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H I.p.(def)</td>
<td>1070</td>
<td>1125-1000</td>
</tr>
<tr>
<td></td>
<td>C-H o.o.p.</td>
<td>638</td>
<td>700-600</td>
</tr>
<tr>
<td>Imidazo[1,2-α]pyridine</td>
<td>C=N str.</td>
<td>1602</td>
<td>1615-1593</td>
</tr>
<tr>
<td></td>
<td>C-N str.</td>
<td>1070</td>
<td>1220-1020</td>
</tr>
<tr>
<td>Schiff base</td>
<td>C=N str.</td>
<td>1583</td>
<td>1660-1580</td>
</tr>
<tr>
<td>Halide</td>
<td>C-F str.</td>
<td>1070</td>
<td>1200-1000</td>
</tr>
</tbody>
</table>
NMR SPECTRAL STUDIES OF N(2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO[1,2-a]PYRIDINE-3-YL) METHYLENE)-4-METHYLBENZENAMINE.

Instrumental Standard: TMS; Solvent: CDCl\textsubscript{3}; Instrument: BRUKER Spectrometer (500MHz)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.35</td>
<td>3H</td>
<td>singlet</td>
<td>-CH\textsubscript{3}-Ar</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>2.48</td>
<td>3H</td>
<td>singlet</td>
<td>-CH\textsubscript{3}</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>7.25-7.26</td>
<td>3H</td>
<td>doublet</td>
<td>-Ar-H</td>
<td>6.5</td>
</tr>
<tr>
<td>4.</td>
<td>7.31-7.32</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Ha,a'</td>
<td>8.0</td>
</tr>
<tr>
<td>5.</td>
<td>7.39-7.42</td>
<td>3H</td>
<td>triplet</td>
<td>-Ar-H</td>
<td>5.0</td>
</tr>
<tr>
<td>6.</td>
<td>7.53-7.55</td>
<td>3H</td>
<td>doublet</td>
<td>-Ar-H</td>
<td>9.5</td>
</tr>
<tr>
<td>7.</td>
<td>7.76-7.78</td>
<td>1H</td>
<td>doublet</td>
<td>-Ar-H</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Studies on chemical...
Studies on chemical...

Expanded aromatic region of NMR spectra

MASS SPECTRAL STUDIES OF N(2-(4-FLUOROPHENYL)-6-METHYLLH-IMIDAZO[1,2-a]PYRIDINE-3-YL)METHYLENE)-4-METHYLBENZENAMINE.

235

Arylamino)methyl
Studies on chemical…

PROPOSED MASS FragmentATION OF \(N(2-(4\text{-FLUOROPHENYL})-6\text{-METHYLMETHYLIMIDAZO[1,2-\alpha]PYRIDINE-3-YL})\text{-METHYLENE})-4\text{-METHYLBENZENAMINE}. \)

\[
\begin{align*}
\text{m/z = 226} & \quad \text{C}_{11}\text{H}_{14}\text{FN}_2 \\
\text{m/z = 222} & \quad \text{C}_{15}\text{H}_{14}\text{N}_2 \\
\text{m/z = 253} & \quad \text{C}_{13}\text{H}_{12}\text{FN}_3 \\
\text{m/z = 279} & \quad \text{C}_{17}\text{H}_{14}\text{FN}_3 \\
\text{m/z = 343} & \quad \text{C}_{22}\text{H}_{16}\text{FN}_3 \\
\text{m/z = 125} & \quad \text{C}_{7}\text{H}_{8}\text{FN} \\
\text{m/z = 107} & \quad \text{C}_{7}\text{H}_{9}\text{N} \\
\text{m/z = 158} & \quad \text{C}_{10}\text{H}_{10}\text{N}_2 \\
\text{m/z = 144} & \quad \text{C}_{9}\text{H}_{8}\text{N}_2
\end{align*}
\]
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. Various proportion of Ethyl acetate in hexane was used as a mobile phase.

[A] Synthesis of 2-(4-Fluorophenyl)-6-methyl-H-imidazo[1,2-α] pyridine-3-carbaldehyde.

See, Part-C [A], Section-I [B].

[B] Synthesis of N-(2-(4-Fluorophenyl)-6-methylH-imidazo[1,2-α]pyridin-3-yl]methylene)-4-methylbenzenamine.

A mixture of 2-(4-fluorophenyl)-6-methylH-imidazo[1,2-α]pyridine-3-carbaldehyde (2.54gm, 0.01mol) and p-toludine (1.08gm, 0.01mol) in methanol (20 ml) in presence of catalytic amount of glacial acetic acid was refluxed for 6 hrs. The contents were cooled and product isolated was crystallized from methanol. Yield, 52%, m.p. 188°C, C_{18}H_{22}FN_{3} ; Found : C, 76.98%; H, 5.33%; N,12.29%; Requires : C, 76.95%; H, 5.28%; N, 12.24%.

Similarly, other N-(2-(4-fluorophenyl)-6-methylH-imidazo [1,2-α]pyridin-3-yl]methylene)-4-arylamines were prepared. The physical constants are recorded in Table No. 12a.

Antimicrobial testing was carried out as described in part-(I), section-I(D). The zones of inhibition of compounds are recorded in Table No.12b.
Table-12a: Physical constants of N-(2-(4-fluorophenyl)-6-methylH-imidazo[1,2-α]pyridin-3-yl)methylene)-4-arylamines.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution</th>
<th>Molecular Formula/ Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Calcd./Found</td>
</tr>
<tr>
<td>12a</td>
<td>C_6H_5</td>
<td>$C_{21}H_{18}FN_3$ 329.37</td>
<td>163</td>
<td>81</td>
<td>76.58</td>
</tr>
<tr>
<td>12b</td>
<td>4-CH$_3$-C_6H_4</td>
<td>$C_{22}H_{18}FN_3$ 343.39</td>
<td>154</td>
<td>72</td>
<td>76.95</td>
</tr>
<tr>
<td>12c</td>
<td>2-CH$_3$-C_6H_4</td>
<td>$C_{22}H_{18}FN_3$ 343.39</td>
<td>147</td>
<td>86</td>
<td>76.95</td>
</tr>
<tr>
<td>12d</td>
<td>2,5-(CH$_3$)$_2$-C_6H_4</td>
<td>$C_{23}H_{20}FN_3$ 357.42</td>
<td>158</td>
<td>78</td>
<td>77.29</td>
</tr>
<tr>
<td>12e</td>
<td>4-OCH$_3$-C_6H_4</td>
<td>$C_{22}H_{18}FN_3$ 359.39</td>
<td>110</td>
<td>73</td>
<td>73.52</td>
</tr>
<tr>
<td>12f</td>
<td>2,5-(Cl)$_2$-C_6H_4</td>
<td>$C_{21}H_{16}Cl_2FN_3$ 398.26</td>
<td>159</td>
<td>66</td>
<td>63.33</td>
</tr>
<tr>
<td>12g</td>
<td>4-Cl-C_6H_4</td>
<td>$C_{21}H_{18}ClFN_3$ 363.81</td>
<td>168</td>
<td>70</td>
<td>69.33</td>
</tr>
<tr>
<td>12h</td>
<td>4-F-C_6H_4</td>
<td>$C_{21}H_{18}F_2N_3$ 347.36</td>
<td>113</td>
<td>67</td>
<td>72.61</td>
</tr>
</tbody>
</table>

Studies on chemical...
TABLE 12B: ANTIMICROBIAL ACTIVITY OF (17E)-N-((2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO [1,2-α]PYRIDIN-3-YL]METHYLENE)-4-ARYLAMINES. (in µg/ml)

No.	Code No.	Antibacterial activity																		
			Gram +ve Bacteria	Gram -ve Bacteria	Uni/Multicellular Fungi															
			Staphylococcus aureus	Bacillus subtilis	Escherichia coli	Salmonella paratyphi B	Aspergillus niger	Candida albicans												
1.	12a	+	+	-	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	-
2.	12b	+	+	-	+	+	+	-	-	-	+	+	-	+	+	-	-	-	-	-
3.	12c	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	-
4.	12d	+	+	-	+	+	-	-	-	+	+	+	+	+	-	-	+	+	+	-
5.	12e	-	-	-	+	+	-	+	+	-	+	+	+	-	-	-	-	-	-	-
6.	12f	+	+	-	+	+	+	-	-	-	-	-	-	-	-	+	+	-	+	-
7.	12g	+	+	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8.	12h	+	+	+	+	+	-	-	-	-	-	-	-	-	-	+	+	-	+	-

Where (+) = New synthesized compounds were active against microorganism

(-) = New synthesized compounds were inactive against microorganism
Studies on chemical...
SECTION-II
SYNTHESIS AND BIOLOGICAL SCREENING OF N-((2-(4-FLUOROPHENYL))-6-METHYLH-IMIDAZO[1,2-α]PYRIDIN-3-YL]METHYL)-4-ARYLAMINES.

Aminomethyl derivatives of heterocyclic compounds are associated with diverse therapeutical activities. These finding prompted us to synthesize some representative aminomethyl derivative of Type (XIII) bearing imidazo[1,2-α]pyridine moiety obtained by selective reduction of (imine group) schiff’s bases of Type (XII) with sodium borohydride in controlled experimental condition as shown in the reaction scheme.

![Reaction Scheme]

Type (XII) $R = \text{Aryl}$

Type (XIII) $R = \text{Aryl}$

The constitution of newly synthesized compounds have been supported by using elemental analysis, infrared and 1H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

All the compounds have been screened for their in vitro biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger*, *Candida albicans* at a concentration of 2000/1000/500 µg/ml. The biological activity of the synthesized compounds have been compared with standard drugs. Some compounds have been found to have moderate activity as compared to known antibiotics recorded on Table No.13b.
IR SPECTRAL STUDIES OF N-((2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO[1,2-α]PYRIDIN-3-YL)METHYL)-4-METHYLBENZENAMINE.

Instrument: SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm\(^{-1}\) (KBr pallet method)

<table>
<thead>
<tr>
<th>Type</th>
<th>Vibration Mode</th>
<th>Frequency in cm(^{-1})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Reported</td>
</tr>
<tr>
<td>Alkane</td>
<td>C-H str.</td>
<td>2941</td>
<td>2975-2940</td>
</tr>
<tr>
<td></td>
<td>C-H str. (sym.)</td>
<td>2848</td>
<td>2880-2860</td>
</tr>
<tr>
<td></td>
<td>C-H def.</td>
<td>1437</td>
<td>1470-1435</td>
</tr>
<tr>
<td></td>
<td>C-H def. (sym.)</td>
<td>1390</td>
<td>1395-1370</td>
</tr>
<tr>
<td>Aromatic</td>
<td>C-H str.</td>
<td>2941</td>
<td>2980-2930</td>
</tr>
<tr>
<td></td>
<td>C=C str.</td>
<td>1504</td>
<td>1585-1480</td>
</tr>
<tr>
<td></td>
<td>C-H I.p.(def)</td>
<td>1078</td>
<td>1125-1000</td>
</tr>
<tr>
<td></td>
<td>C-H o.o.p.</td>
<td>669</td>
<td>700-600</td>
</tr>
<tr>
<td>Imidazo[1,2-α]pyridine</td>
<td>C=N str.</td>
<td>1614</td>
<td>1615-1593</td>
</tr>
<tr>
<td></td>
<td>C-N str.</td>
<td>1024</td>
<td>1220-1020</td>
</tr>
<tr>
<td>Amine</td>
<td>-NH str.</td>
<td>3356</td>
<td>3400-3200</td>
</tr>
<tr>
<td>Halide</td>
<td>C-F str.</td>
<td>1161</td>
<td>1200-1000</td>
</tr>
</tbody>
</table>
NMR SPECTRAL STUDIES OF N-((2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO[1,2-a]PYRIDIN-3-YL)METHYL)-4-METHYLBENZENAMINE.

Instrumental Standard: TMS; Solvent: CDCl₃; Instrument: BRUKER Spectrometer (500MHz)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical shift in ppm</th>
<th>Relative No. of proton</th>
<th>Multiplicity</th>
<th>Inference</th>
<th>J value in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.74</td>
<td>3H</td>
<td>singlet</td>
<td>Ar-CH₃</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2.91</td>
<td>3H</td>
<td>singlet</td>
<td>-CH₃</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3.87-3.90</td>
<td>2H</td>
<td>singlet</td>
<td>-CH₂</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>6.530</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Ha-a'</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>6.30-6.92</td>
<td>2H</td>
<td>doublet</td>
<td>-Ar-Hb,b'</td>
<td>8.5</td>
</tr>
<tr>
<td>6</td>
<td>7.20-7.22</td>
<td>1H</td>
<td>doublet</td>
<td>-Ar-H</td>
<td>10.0</td>
</tr>
<tr>
<td>7</td>
<td>7.32-7.34</td>
<td>1H</td>
<td>doublet</td>
<td>-Ar-H</td>
<td>10.0</td>
</tr>
<tr>
<td>8</td>
<td>7.38-7.42</td>
<td>1H</td>
<td>triplet</td>
<td>-Ar-H</td>
<td>10.0</td>
</tr>
<tr>
<td>9</td>
<td>7.54-7.56</td>
<td>2H</td>
<td>triplet</td>
<td>-Ar-Hc,c'</td>
<td>12.0</td>
</tr>
<tr>
<td>10</td>
<td>7.67-7.64</td>
<td>1H</td>
<td>singlet</td>
<td>-NH</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>7.93-7.96</td>
<td>2H</td>
<td>multiplet</td>
<td>-Ar-Hd,d'</td>
<td>-</td>
</tr>
</tbody>
</table>
Studies on chemical…

Expanded aromatic region of NMR spectra

MASS SPECTRAL STUDIES OF \(N-(2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO[1,2-a]PYRIDIN-3-YL)METHYL)-4-METHYLBENZENAMINE.\)
PROPOSED MASS FRAGMENTATION OF N((2-(4-FLUOROPHENYL))-6-METHYL H-IMIDAZO[1,2-a]PYRIDINE-3-YL) METHYLENE)-4-METHYLBENZENAMINE.
EXPERIMENTAL SECTION

Melting points of all the synthesized compounds were taken in open capillary bath on controlled temperature heating mental. The crystallization of all the compounds was carried out in appropriate solvents. TLC was carried out on silica coated aluminum sheet (Merck prepared plates) as stationary phase. 55 % Ethyl acetate in hexane was used as a mobile phase.

[A] Synthesis of \(N\(-(2\-(4\text{-Fluorophenyl})\-6\text{-methyl-imidazo}[1,2-\alpha]\text{pyridin-3-yl})\text{methylene})\-4\text{-methylbenzenamines.} \)

See, Part-III [A], Section-I [B].

[B] Synthesis of \(N\-(2\-(4\text{-Fluorophenyl})\-6\text{-methylH-imidazo}[1,2-\alpha]\text{pyridin-3-yl})\text{methyl})\-4\text{-methylbenzenamine.} \)

Sodium borohydride (0.15mol, 0.57gm) was added to a methanolic solution of \(N\-(2\-(4\text{-fluorophenyl})\-6\text{-methylH-imidazo}[1,2-\alpha]\text{pyridin-3-yl})\text{methylene})\-4\text{-methylbenzenamines.} \) (0.01mol, 3.43gm) over a period of 30 minutes at temperature 5-10 °C with constant stirring. The reaction mixture was kept over night at room temp. The excess sodium borohydride was neutralized by adding water and the product was extracted with ether. The ether extract was washed with water until become neutral, then dried over anhydrous \(\text{Na}_2\text{SO}_4 \) and finally the ether was evaporated to give aminomethyl derivatives. Crystallized from ethanol. Yield, 65%, m.p. 163 °C, \(\text{C}_{22}\text{H}_{20}\text{FN}_3 \); Found: C, 76.34; H, 5.71; N, 12.02 %; Requires: C, 76.50; H, 5.84; N, 12.17 %.

Similarly, other (17Z)-\(N\-((2\-(4\text{-fluorophenyl})\-6\text{-methylH-imidazo}[1,2-\alpha]\text{pyridin-3-yl})\text{methylene})\-4\text{-arylamines} \) were prepared. The physical constants are recorded in Table No. 13a.
Studies on chemical...

[C] **Antimicrobial activity of** \(N-(2-(4-\text{Fluorophenyl})-6-\text{methyl}H\text{-}\text{imidazo}[1,2-\alpha]\text{pyridin-3-yl})\text{methyl})\text{-4-arylamines.} \)

Antimicrobial testing was carried out as described in part-(I), section-I(D).

The zones of inhibition of compounds are recorded in Graphical Chart No.13b.
Table-13a: Physical constants of \(N-((2\text{-}(4\text{-Fluorophenyl})\text{-}6\text{-methyl}H\text{-}\text{imidazo}[1,2-\alpha] \text{pyridin-3-yl})\text{methyl})\text{-}4\text{-arylamines.} \)

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Substitution (\text{R})</th>
<th>Molecular Formula/ Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>% Composition Calcd./Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>13a</td>
<td>(\text{C}_6\text{H}_5\text{^-})</td>
<td>(\text{C}{21}\text{H}{16}\text{FN}_3) 331.38</td>
<td>185</td>
<td>58</td>
<td>76.11 (76.02) 5.47 (5.29) 12.68 (12.43)</td>
</tr>
<tr>
<td>13b</td>
<td>4-CH(_3\text{-C}_6\text{H}_4\text{^-})</td>
<td>(\text{C}{22}\text{H}{20}\text{FN}_3) 345.41</td>
<td>163</td>
<td>65</td>
<td>76.50 (76.34) 5.84 (5.71) 12.17 (12.02)</td>
</tr>
<tr>
<td>13c</td>
<td>2-CH(_3\text{-C}_6\text{H}_4\text{^-})</td>
<td>(\text{C}{22}\text{H}{20}\text{FN}_3) 345.41</td>
<td>174</td>
<td>75</td>
<td>76.50 (76.39) 5.84 (5.74) 12.17 (12.09)</td>
</tr>
<tr>
<td>13d</td>
<td>2,5-(CH(_3))(_2\text{-C}_6\text{H}_3\text{^-})</td>
<td>(\text{C}{21}\text{H}{22}\text{FN}_3) 359.43</td>
<td>160</td>
<td>63</td>
<td>76.85 (76.64) 6.17 (6.01) 11.69 (11.61)</td>
</tr>
<tr>
<td>13e</td>
<td>4-OCH(_3\text{-C}_6\text{H}_4\text{^-})</td>
<td>(\text{C}{22}\text{H}{20}\text{F}_5\text{N}_3\text{O}) 361.41</td>
<td>198</td>
<td>55</td>
<td>73.11 (73.04) 5.58 (5.29) 11.63 (11.41)</td>
</tr>
<tr>
<td>13f</td>
<td>2,5-(Cl)(_2\text{-C}_6\text{H}_3\text{^-})</td>
<td>(\text{C}{21}\text{H}{16}\text{Cl}_2\text{F}_5\text{N}_3) 398.26</td>
<td>188</td>
<td>45</td>
<td>63.01 (62.72) 4.03 (3.89) 10.50 (10.19)</td>
</tr>
<tr>
<td>13g</td>
<td>4-Cl-C(_6\text{H}_4\text{^-})</td>
<td>(\text{C}{21}\text{H}{17}\text{ClFN}_3) 365.83</td>
<td>176</td>
<td>63</td>
<td>68.95 (68.65) 4.68 (4.52) 11.49 (11.32)</td>
</tr>
<tr>
<td>13h</td>
<td>4-F-C(_6\text{H}_4\text{^-})</td>
<td>(\text{C}{21}\text{H}{17}\text{F}_2\text{N}_3) 349.37</td>
<td>186</td>
<td>49</td>
<td>72.19 (72.03) 4.90 (4.62) 12.10 (11.83)</td>
</tr>
</tbody>
</table>
TABLE 13B : ANTIMICROBIAL ACTIVITY OF N-((2-(4-FLUOROPHENYL)-6-METHYLH-IMIDAZO[1,2-\(\alpha\]PYRIDIN-3-YL]METHYL)-4-ARYLAMINES. (in µg/ml)

<table>
<thead>
<tr>
<th>No.</th>
<th>Code No.</th>
<th>Antibacterial activity</th>
<th>Antifungal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gram +ve Bacteria</td>
<td>Gram -ve Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>13a</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>13b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>13c</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>13d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>13e</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>13f</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>13g</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>13h</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Where (+) = New synthesized compounds were active against microorganism

(-) = New synthesized compounds were inactive against microorganism
REFERENCES

Studies on chemical…

